Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Sensation Disorders D012678 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Tuberculosis D014376 20 associated lipids
Vascular Diseases D014652 16 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Shatrov VA et al. Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells. 1997 Biochem. Biophys. Res. Commun. pmid:9168973
Malchinkhuu E et al. S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. 2008 Biochem. Biophys. Res. Commun. pmid:18088600
Osada M et al. Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. 2002 Biochem. Biophys. Res. Commun. pmid:12445827
Lee OH et al. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. 1999 Biochem. Biophys. Res. Commun. pmid:10544002
Krump-Konvalinkova V et al. FTY720 inhibits S1P-mediated endothelial healing: relationship to S1P1-receptor surface expression. 2008 Biochem. Biophys. Res. Commun. pmid:18402775
Czech B et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. 2009 Biochem. Biophys. Res. Commun. pmid:19720050
Hiraga Y et al. Changes in S1P1 and S1P2 expression during embryonal development and primitive endoderm differentiation of F9 cells. 2006 Biochem. Biophys. Res. Commun. pmid:16631609
Tang HB et al. S1P/S1PR3 signaling mediated proliferation of pericytes via Ras/pERK pathway and CAY10444 had beneficial effects on spinal cord injury. 2018 Biochem. Biophys. Res. Commun. pmid:29534963
Sato C et al. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. 2012 Biochem. Biophys. Res. Commun. pmid:22659743
Kim BS et al. The sphingosine-1-phosphate derivative NHOBTD inhibits angiogenesis both in vitro and in vivo. 2011 Biochem. Biophys. Res. Commun. pmid:21888894
Wong RC et al. Gap junctions modulate apoptosis and colony growth of human embryonic stem cells maintained in a serum-free system. 2006 Biochem. Biophys. Res. Commun. pmid:16616002
Shida D et al. Lysophospholipids transactivate HER2/neu (erbB-2) in human gastric cancer cells. 2005 Biochem. Biophys. Res. Commun. pmid:15649431
Alden KP et al. Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. 2011 Biochem. Biophys. Res. Commun. pmid:21683064
Sato K et al. HDL-like lipoproteins in cerebrospinal fluid affect neural cell activity through lipoprotein-associated sphingosine 1-phosphate. 2007 Biochem. Biophys. Res. Commun. pmid:17544365
Bayless KJ and Davis GE Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. 2003 Biochem. Biophys. Res. Commun. pmid:14651957
Morii T and Weissbach L Sphingosine 1-phosphate and cell migration: resistance to angiogenesis inhibitors. 2003 Biochem. Biophys. Res. Commun. pmid:14550287
Hung WC and Chuang LY Induction of apoptosis by sphingosine-1-phosphate in human hepatoma cells is associated with enhanced expression of bax gene product. 1996 Biochem. Biophys. Res. Commun. pmid:8954076
Yang L et al. Activation of protein-tyrosine kinase Syk in human platelets stimulated with lysophosphatidic acid or sphingosine 1-phosphate. 1996 Biochem. Biophys. Res. Commun. pmid:8954916
Rahman MM et al. Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs. 2015 Biochem. Biophys. Res. Commun. pmid:25951977
Ikeda H et al. Sphingosine 1-phosphate enhances portal pressure in isolated perfused liver via S1P2 with Rho activation. 2004 Biochem. Biophys. Res. Commun. pmid:15240112