Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Sensation Disorders D012678 2 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Tachycardia, Sinus D013616 2 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Thrombocytopenia D013921 15 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Tuberculosis D014376 20 associated lipids
Vascular Diseases D014652 16 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Roviezzo F et al. Involvement of proteinase activated receptor-2 in the vascular response to sphingosine 1-phosphate. 2014 Clin. Sci. pmid:24131465
Qin Z et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. 2014 Mol. Cancer Ther. pmid:24140934
Ryu JM et al. Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. 2014 Stem Cell Res pmid:24145189
Yu Y et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. 2014 Lipids pmid:24158769
Giannouli CC et al. Visualizing S1P-directed cellular egress by intravital imaging. 2014 Biochim. Biophys. Acta pmid:24090699
Zhang Y et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. 2014 J. Clin. Invest. pmid:24837436
Uhlig S et al. Differential regulation of lung endothelial permeability in vitro and in situ. 2014 Cell. Physiol. Biochem. pmid:24977477
Karaca I et al. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. 2014 J. Biol. Chem. pmid:24808180
Fayyaz S et al. Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype. 2014 Diabetologia pmid:24292566
Meng Y et al. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. 2014 Fertil. Steril. pmid:24993801
Kang JW and Lee SM Impaired expression of caveolin-1 contributes to hepatic ischemia and reperfusion injury. 2014 Biochem. Biophys. Res. Commun. pmid:24997335
Shimizu Y et al. Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin. 2014 Am. J. Pathol. pmid:24641902
Ohotski J et al. Sphingosine kinase 2 prevents the nuclear translocation of sphingosine 1-phosphate receptor-2 and tyrosine 416 phosphorylated c-Src and increases estrogen receptor negative MDA-MB-231 breast cancer cell growth: The role of sphingosine 1-phosphate receptor-4. 2014 Cell. Signal. pmid:24486401
Takeo T et al. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. 2014 Cryobiology pmid:24201107
Nakajima C et al. The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development. 2014 Development pmid:25377550
Barnes J and Dweik RA Is pulmonary hypertension a metabolic disease? 2014 Am. J. Respir. Crit. Care Med. pmid:25360726
Chen J et al. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. 2014 PLoS Genet. pmid:25356849
Degagné E et al. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. 2014 J. Clin. Invest. pmid:25347472
Wang F and Ye P Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein. 2014 Lipids Health Dis pmid:25339382
Keller J et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. 2014 Nat Commun pmid:25333900
Lepletier A et al. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease. 2014 PLoS Negl Trop Dis pmid:25330249
Bradley E et al. Critical role of Spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. 2014 PLoS ONE pmid:25330231
Hamidi S et al. TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. 2014 Biochim. Biophys. Acta pmid:24440818
Xu H et al. Sphingosine-1-phosphate receptor agonist, FTY720, restores coronary flow reserve in diabetic rats. 2014 Circ. J. pmid:25319164
Schaper K et al. Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. 2014 Mol. Immunol. pmid:24434636
Fukui H et al. S1P-Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. 2014 Dev. Cell pmid:25313964
Kono M et al. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. 2014 J. Clin. Invest. pmid:24667638
Sasaki H et al. Regulation of alkaline ceramidase activity by the c-Src-mediated pathway. 2014 Arch. Biochem. Biophys. pmid:24708996
Ntranos A et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. 2014 J. Neuroimmunol. pmid:24680062
Liu M et al. Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. 2014 J. Biol. Chem. pmid:24318881
Li F et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. 2014 Hum. Reprod. pmid:24221908
Bigaud M et al. Second generation S1P pathway modulators: research strategies and clinical developments. 2014 Biochim. Biophys. Acta pmid:24239768
Huang YL et al. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. 2014 Cell. Signal. pmid:24333325
Emery SM et al. Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. 2014 J. Pharmacol. Exp. Ther. pmid:24259678
Adamson RH et al. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24531813
Rosen H et al. The organization of the sphingosine 1-phosphate signaling system. 2014 Curr. Top. Microbiol. Immunol. pmid:24728591
Hanson MA and Peach R Structural biology of the S1P1 receptor. 2014 Curr. Top. Microbiol. Immunol. pmid:24728592
Nagahashi M et al. Sphingosine-1-phosphate transporters as targets for cancer therapy. 2014 Biomed Res Int pmid:25133174
Nguyen AV et al. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. 2014 World J. Gastroenterol. pmid:25132744
Deng Y et al. Sphingosine Kinase-1/sphingosine 1-phosphate pathway in diabetic nephropathy. 2014 Chin. Med. J. pmid:25131242
Ogle ME et al. Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. 2014 Acta Biomater pmid:25128750
Bi Y et al. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. 2014 Am. J. Pathol. pmid:25111230
Ishitsuka A et al. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. 2014 Int. J. Mol. Med. pmid:25109763
Xiong H et al. SphK1 confers resistance to apoptosis in gastric cancer cells by downregulating Bim via stimulating Akt/FoxO3a signaling. 2014 Oncol. Rep. pmid:25109605
Rolin J and Maghazachi AA Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. 2014 J. Leukoc. Biol. pmid:24493826
Zhao X et al. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. 2014 J. Mol. Cell. Cardiol. pmid:25106095
Tong X et al. The compensatory enrichment of sphingosine -1- phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. 2014 Cardiovasc Diabetol pmid:24751283
Xiong Y and Hla T S1P control of endothelial integrity. 2014 Curr. Top. Microbiol. Immunol. pmid:24728594
Mendelson K et al. Sphingosine 1-phosphate signalling. 2014 Development pmid:24346695
van Echten-Deckert G et al. Sphingosine-1-phosphate: boon and bane for the brain. 2014 Cell. Physiol. Biochem. pmid:24977488
Fayyaz S et al. Divergent role of sphingosine 1-phosphate on insulin resistance. 2014 Cell. Physiol. Biochem. pmid:24977487
Halmer R et al. Sphingolipids: important players in multiple sclerosis. 2014 Cell. Physiol. Biochem. pmid:24977485
Arlt O et al. Sphingosine-1-phosphate modulates dendritic cell function: focus on non-migratory effects in vitro and in vivo. 2014 Cell. Physiol. Biochem. pmid:24977479
Don AS et al. Re-configuration of sphingolipid metabolism by oncogenic transformation. 2014 Biomolecules pmid:24970218
Snelder N et al. Translational pharmacokinetic modeling of fingolimod (FTY720) as a paradigm compound subject to sphingosine kinase-mediated phosphorylation. 2014 Drug Metab. Dispos. pmid:24965813
Tarbell JM et al. Mechanosensing at the vascular interface. 2014 Annu Rev Biomed Eng pmid:24905872
Potì F et al. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). 2014 Cardiovasc. Res. pmid:24891400
Chawla S et al. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. 2014 PLoS ONE pmid:24887065
Yu H et al. Sphingosine kinase 1 improves cutaneous wound healing in diabetic rats. 2014 Injury pmid:24685054
Smyth SS et al. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. 2014 Arterioscler. Thromb. Vasc. Biol. pmid:24482375
Sykes DA et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization. 2014 Br. J. Pharmacol. pmid:24641481
Zhang J and Song J Amphiphilic degradable polymers for immobilization and sustained delivery of sphingosine 1-phosphate. 2014 Acta Biomater pmid:24631657
Priceman SJ et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. 2014 Cell Rep pmid:24630990
Oizumi A et al. Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate. 2014 PLoS ONE pmid:24586752
Guan Z et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. 2014 J. Am. Soc. Nephrol. pmid:24578134
Takabe K and Spiegel S Export of sphingosine-1-phosphate and cancer progression. 2014 J. Lipid Res. pmid:24474820
Ishizawa S et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. 2014 Clin. Exp. Nephrol. pmid:24463961
Couttas TA et al. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. 2014 Acta Neuropathol Commun pmid:24456642
Borge M et al. The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. 2014 J. Immunol. pmid:25127862
Egom EE Sphingosine-1-phosphate signalling as a therapeutic target for patients with abnormal glucose metabolism and ischaemic heart disease. 2014 J Cardiovasc Med (Hagerstown) pmid:23839592
Abu El-Asrar AM et al. Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. 2014 Lipids Health Dis pmid:25496321
Cencetti F et al. Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. 2014 FEBS J. pmid:25131845
Neuber C et al. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry. 2014 Anal. Chem. pmid:25137547
Nishi T et al. Molecular and physiological functions of sphingosine 1-phosphate transporters. 2014 Biochim. Biophys. Acta pmid:23921254
Xia JY et al. The adipokine/ceramide axis: key aspects of insulin sensitization. 2014 Biochimie pmid:23969158
Albinet V et al. Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells. 2014 Oncogene pmid:23893239
Zeng Y et al. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. 2014 Am. J. Physiol. Heart Circ. Physiol. pmid:24285115
Speak AO et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. 2014 Blood pmid:24235134
Nagahashi M et al. Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. 2014 Adv Biol Regul pmid:24210073
Rao PV Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. 2014 Mar-Apr J Ocul Pharmacol Ther pmid:24283588
Farnoud AM et al. The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway. 2015 Infect. Immun. pmid:25895971
Moolenaar WH Introduction to the ECR special issue on lysophospholipids in biology. 2015 Exp. Cell Res. pmid:25746723
Zhao S and Li J Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the microRNA-17/PTK6/ERK1/2 pathway. 2015 PLoS ONE pmid:25748447
Lin CC et al. Sphingosine-1-phosphate mediates ICAM-1-dependent monocyte adhesion through p38 MAPK and p42/p44 MAPK-dependent Akt activation. 2015 PLoS ONE pmid:25734900
Zhang DD et al. Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors. 2015 Biol. Chem. pmid:25720064
Konstantinou D et al. Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor. 2015 Cell Biol. Int. pmid:25492631
Pyne NJ and Kolesnick RN The life and work of Dr. Robert Bittman (1942-2014). 2015 Biol. Chem. pmid:25473803
Benesch MG et al. Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. 2015 J. Lipid Res. pmid:25896349
Wysoczynski M et al. Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells. 2015 Stem Cell Rev pmid:25086571
Sano N et al. New drug delivery system for liver sinusoidal endothelial cells for ischemia-reperfusion injury. 2015 World J. Gastroenterol. pmid:26668502
Moruno Manchon JF et al. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy. 2015 Sci Rep pmid:26477494
Wang K et al. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. 2015 PLoS Genet. pmid:26474409
Sutter I et al. Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL. 2015 Atherosclerosis pmid:26093887
Boczkowska-Radziwon B et al. Ozonation of human blood increases sphingosine-1-phosphate in plasma. 2015 J. Physiol. Pharmacol. pmid:25903957
Le Bihan O et al. Visualization of adherent cell monolayers by cryo-electron microscopy: A snapshot of endothelial adherens junctions. 2015 J. Struct. Biol. pmid:26470813
Brünnert D et al. Sphingosine 1-phosphate regulates IL-8 expression and secretion via S1PR1 and S1PR2 receptors-mediated signaling in extravillous trophoblast derived HTR-8/SVneo cells. 2015 Placenta pmid:26321412
Zhao YD et al. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. 2015 PLoS ONE pmid:26317340
Cantalupo A et al. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. 2015 Nat. Med. pmid:26301690
Jeong SK et al. Sphingosine kinase 1 activation enhances epidermal innate immunity through sphingosine-1-phosphate stimulation of cathelicidin production. 2015 J. Dermatol. Sci. pmid:26113114
Marycz K et al. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine. 2015 Cell. Mol. Biol. Lett. pmid:26110483