Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Coronary Disease D003327 70 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Leukemia D007938 74 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Atherosclerosis D050197 85 associated lipids
Arteriosclerosis D001161 86 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Insulin Resistance D007333 99 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Kawamori T et al. Role for sphingosine kinase 1 in colon carcinogenesis. 2009 FASEB J. pmid:18824518
Rohatagi S et al. Use of an exposure-response model to aid early drug development of an oral sphingosine 1-phosphate receptor modulator. 2009 J Clin Pharmacol pmid:18948412
Satoh Y et al. Regulation by sphingolipids of the fate of FRTL-5 cells. 2009 J. Biochem. pmid:18953023
Michaelson LV et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. 2009 Plant Physiol. pmid:18978071
Jo SK et al. Divergent roles of sphingosine kinases in kidney ischemia-reperfusion injury. 2009 Kidney Int. pmid:18971925
Wang L and Dudek SM Regulation of vascular permeability by sphingosine 1-phosphate. 2009 Microvasc. Res. pmid:18973762
Sun X et al. Enhanced interaction between focal adhesion and adherens junction proteins: involvement in sphingosine 1-phosphate-induced endothelial barrier enhancement. 2009 Microvasc. Res. pmid:19323978
Beech DJ et al. TRPC channel lipid specificity and mechanisms of lipid regulation. 2009 Cell Calcium pmid:19324410
Li Y and Yu KL [Advances in thrombin-protease-activated receptor 1-sphingosine 1-phosphate pathway during sepsis]. 2009 Zhongguo Wei Zhong Bing Ji Jiu Yi Xue pmid:19278594
He X et al. Quantitative analysis of sphingosine-1-phosphate by HPLC after napthalene-2,3-dicarboxaldehyde (NDA) derivatization. 2009 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:19285924
Peyruchaud O Novel implications for lysophospholipids, lysophosphatidic acid and sphingosine 1-phosphate, as drug targets in cancer. 2009 Anticancer Agents Med Chem pmid:19442039
Kenagy RD et al. Proliferative capacity of vein graft smooth muscle cells and fibroblasts in vitro correlates with graft stenosis. 2009 J. Vasc. Surg. pmid:19307078
Milara J et al. Sphingosine-1-phosphate increases human alveolar epithelial IL-8 secretion, proliferation and neutrophil chemotaxis. 2009 Eur. J. Pharmacol. pmid:19285497
Salinas NR et al. Lung tumor development in the presence of sphingosine 1-phosphate agonist FTY720. 2009 Pathol. Oncol. Res. pmid:19214784
Choi SK et al. Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. 2009 Cardiovasc. Res. pmid:19218288
Tokumura A et al. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. 2009 Int J Med Sci pmid:19521548
Huang YL et al. Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells. 2009 J. Biochem. pmid:19692429
Antoon JW et al. Design, synthesis, and biological activity of a family of novel ceramide analogues in chemoresistant breast cancer cells. 2009 J. Med. Chem. pmid:19694470
Zhao J et al. Phosphotyrosine protein dynamics in cell membrane rafts of sphingosine-1-phosphate-stimulated human endothelium: role in barrier enhancement. 2009 Cell. Signal. pmid:19755153
Crousillac S et al. Sphingosine-1-phosphate elicits receptor-dependent calcium signaling in retinal amacrine cells. 2009 J. Neurophysiol. pmid:19776367
Igarashi J et al. Transforming growth factor-beta1 downregulates caveolin-1 expression and enhances sphingosine 1-phosphate signaling in cultured vascular endothelial cells. 2009 Am. J. Physiol., Cell Physiol. pmid:19710365
Stamer WD et al. Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes. 2009 Exp. Eye Res. pmid:19715693
Li C et al. Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. 2009 Am. J. Pathol. pmid:19729475
Hait NC et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. 2009 Science pmid:19729656
Hashimoto T et al. Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesis. 2009 J. Lipid Res. pmid:19020339
Maeurer C et al. Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. 2009 Cell. Signal. pmid:19000755
Ikeda H et al. Sphingosine 1-phosphate regulates regeneration and fibrosis after liver injury via sphingosine 1-phosphate receptor 2. 2009 J. Lipid Res. pmid:18955732
Ranty ML et al. Ceramide production associated with retinal apoptosis after retinal detachment. 2009 Graefes Arch. Clin. Exp. Ophthalmol. pmid:18958490
Young N et al. Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. 2009 Mol. Cancer Res. pmid:19147534
Weis N et al. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. 2009 Mol. Biol. Cell pmid:19129475
Li MH et al. S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. 2009 Cancer Lett. pmid:19131156
Gérard A et al. The Rac activator Tiam1 controls efficient T-cell trafficking and route of transendothelial migration. 2009 Blood pmid:19139083
Berdyshev EV et al. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. 2009 J. Biol. Chem. pmid:19119142
Vogel P et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. 2009 PLoS ONE pmid:19119317
Roztocil E et al. Mechanisms of sphingosine-1-phosphate-induced akt-dependent smooth muscle cell migration. 2009 Surgery pmid:19081473
Evindar G et al. Synthesis and evaluation of alkoxy-phenylamides and alkoxy-phenylimidazoles as potent sphingosine-1-phosphate receptor subtype-1 agonists. 2009 Bioorg. Med. Chem. Lett. pmid:19081720
Lagadari M et al. Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signalling. 2009 Int. J. Oncol. pmid:19082500
Malchinkhuu E et al. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. 2009 Mol. Biol. Cell pmid:19864456
Morris AJ et al. Blood relatives: dynamic regulation of bioactive lysophosphatidic acid and sphingosine-1-phosphate metabolism in the circulation. 2009 Trends Cardiovasc. Med. pmid:19818950
Tachikawa M et al. Lysophospholipids enhance taurine release from rat retinal vascular endothelial cells under hypoosmotic stress. 2009 Microvasc. Res. pmid:19804786
Liu X et al. Effect of sphingosine 1-phosphate on morphological and functional responses in endothelia and venules after scalding injury. 2009 Burns pmid:19520517
Okajima F et al. [Role of S1P in the lipoprotein-induced actions and their signaling mechanism]. 2009 Seikagaku pmid:19522297
Chang CL et al. S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. 2009 Am. J. Physiol., Cell Physiol. pmid:19474291
Schulz C et al. Trafficking of murine hematopoietic stem and progenitor cells in health and vascular disease. 2009 Microcirculation pmid:19479622
Kimber I et al. Langerhans cell migration: not necessarily always at the center of the skin sensitization universe. 2009 J. Invest. Dermatol. pmid:19603050
Pyne NJ et al. New aspects of sphingosine 1-phosphate signaling in mammalian cells. 2009 Adv. Enzyme Regul. pmid:19534035
Price MM et al. Sphingosine-1-phosphate induces development of functionally mature chymase-expressing human mast cells from hematopoietic progenitors. 2009 FASEB J. pmid:19535686
Nixon GF Sphingolipids in inflammation: pathological implications and potential therapeutic targets. 2009 Br. J. Pharmacol. pmid:19563535
Taniguchi K et al. Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumor growth. 2009 Cancer Sci. pmid:19493272
Daum G et al. Sphingosine 1-phosphate: a regulator of arterial lesions. 2009 Arterioscler. Thromb. Vasc. Biol. pmid:19592471
Hu W et al. Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. 2009 J. Lipid Res. pmid:19369694
Jung ID et al. FcepsilonRI-mediated mast cell migration: signaling pathways and dependence on cytosolic free Ca2+ concentration. 2009 Cell. Signal. pmid:19632319
Martin JL et al. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. 2009 J. Biol. Chem. pmid:19633297
Trifilieff A et al. Role of sphingosine-1-phosphate (S1P) and the S1P(2) receptor in allergen-induced, mast cell-dependent contraction of rat lung parenchymal strips. 2009 Naunyn Schmiedebergs Arch. Pharmacol. pmid:19636535
Wacker BK et al. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. 2009 Stroke pmid:19644058
Miranda GE et al. Sphingosine-1-phosphate is a key regulator of proliferation and differentiation in retina photoreceptors. 2009 Invest. Ophthalmol. Vis. Sci. pmid:19357361
Vessey DA et al. Sphingosine 1-phosphate is an important endogenous cardioprotectant released by ischemic pre- and postconditioning. 2009 Am. J. Physiol. Heart Circ. Physiol. pmid:19648253
Ohno Y et al. Palmitoylation of the sphingosine 1-phosphate receptor S1P is involved in its signaling functions and internalization. 2009 Genes Cells pmid:19619245
Michaud MD et al. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. 2009 Arterioscler. Thromb. Vasc. Biol. pmid:19423865
Mullershausen F et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. 2009 Nat. Chem. Biol. pmid:19430484
Tao R et al. Cardiomyocyte S1P1 receptor-mediated extracellular signal-related kinase signaling and desensitization. 2009 J. Cardiovasc. Pharmacol. pmid:19433984
Yang G et al. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. 2009 Am. J. Physiol. Endocrinol. Metab. pmid:19435851
Yin H et al. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. 2009 J. Biol. Chem. pmid:19286662
Hofmann U et al. Protective effects of sphingosine-1-phosphate receptor agonist treatment after myocardial ischaemia-reperfusion. 2009 Cardiovasc. Res. pmid:19416991
Ader I et al. When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. 2009 Cancer Res. pmid:19383898
Greenspon J et al. Sphingosine-1-phosphate protects intestinal epithelial cells from apoptosis through the Akt signaling pathway. 2009 Dig. Dis. Sci. pmid:18654850
Malemud CJ The discovery of novel experimental therapies for inflammatory arthritis. 2009 Mediators Inflamm. pmid:20339519
Xie B et al. Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. 2009 J. Cell. Physiol. pmid:18781584
Foster DJ et al. Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells. 2009 J. Neurochem. pmid:19012745
Okajima F et al. Anti-atherogenic actions of high-density lipoprotein through sphingosine 1-phosphate receptors and scavenger receptor class B type I. 2009 Endocr. J. pmid:18753704
Brinkmann V FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. 2009 Br. J. Pharmacol. pmid:19814729
Wojciak JM et al. The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen. 2009 Proc. Natl. Acad. Sci. U.S.A. pmid:19815502
Jacobson JR Pharmacologic therapies on the horizon for acute lung injury/acute respiratory distress syndrome. 2009 J. Investig. Med. pmid:19820408
Jenne CN et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. 2009 J. Exp. Med. pmid:19808259
Snider AJ et al. A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. 2009 FASEB J. pmid:18815359
Long DA and Price KL Sphingosine kinase-1: a potential mediator of renal fibrosis. 2009 Kidney Int. pmid:19789541
Heo K et al. Sphingosine 1-phosphate induces vascular endothelial growth factor expression in endothelial cells. 2009 BMB Rep pmid:19874715
Zhao M et al. [The effects of Sphing-1-phosphate(S1P) on the potassium channel of the ventricular myocytes]. 2009 Zhongguo Ying Yong Sheng Li Xue Za Zhi pmid:21186617
Jongsma M et al. Different response patterns of several ligands at the sphingosine-1-phosphate receptor subtype 3 (S1P(3)). 2009 Br. J. Pharmacol. pmid:19309361
Bedia C et al. Synthesis of a fluorogenic analogue of sphingosine-1-phosphate and its use to determine sphingosine-1-phosphate lyase activity. 2009 Chembiochem pmid:19226506
Rodgers A et al. Sphingosine 1-phosphate regulation of extracellular signal-regulated kinase-1/2 in embryonic stem cells. 2009 Stem Cells Dev. pmid:19228106
Gellings Lowe N et al. Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. 2009 Cardiovasc. Res. pmid:19228708
Garcia JG Concepts in microvascular endothelial barrier regulation in health and disease. 2009 Microvasc. Res. pmid:19232241
Igarashi J and Michel T Sphingosine-1-phosphate and modulation of vascular tone. 2009 Cardiovasc. Res. pmid:19233865
Sattler K and Levkau B Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. 2009 Cardiovasc. Res. pmid:19233866
Ishii M et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. 2009 Nature pmid:19204730
Zhang ZY et al. FTY720 attenuates lesional interleukin-17(+) cell accumulation in rat experimental autoimmune neuritis. 2009 Neuropathol. Appl. Neurobiol. pmid:19207263
Gillies L et al. The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: possible role in regulating cell division. 2009 Cell. Signal. pmid:19211033
Hla T and Im DS Cell biology. The ABCs of lipophile transport. 2009 Science pmid:19213902
Thathiah A et al. The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. 2009 Science pmid:19213921
Gaengel K et al. Endothelial-mural cell signaling in vascular development and angiogenesis. 2009 Arterioscler. Thromb. Vasc. Biol. pmid:19164813
Benamer N et al. Molecular and functional characterization of a new potassium conductance in mouse ventricular fibroblasts. 2009 J. Mol. Cell. Cardiol. pmid:19166858
Scherer M et al. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry. 2009 Clin. Chem. pmid:19325012
Wadgaonkar R et al. Differential regulation of sphingosine kinases 1 and 2 in lung injury. 2009 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:19168577
Reines I et al. Topical application of sphingosine-1-phosphate and FTY720 attenuate allergic contact dermatitis reaction through inhibition of dendritic cell migration. 2009 J. Invest. Dermatol. pmid:19194476
Kim RH et al. Export and functions of sphingosine-1-phosphate. 2009 Biochim. Biophys. Acta pmid:19268560
Kobayashi N et al. Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. 2009 J. Biol. Chem. pmid:19531471
Chien CC et al. Activation of telomerase and cyclooxygenase-2 in PDGF and FGF inhibition of C2-ceramide-induced apoptosis. 2009 J. Cell. Physiol. pmid:18932216
Estrada R et al. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. 2009 Histochem. Cell Biol. pmid:18936953
Maceyka M et al. Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. 2009 J. Lipid Res. pmid:18987387