Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Che W et al. Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1. 2014 Am. J. Respir. Cell Mol. Biol. pmid:24032470
Chang N et al. Sphingosine 1-phosphate receptors negatively regulate collagen type I/III expression in human bone marrow-derived mesenchymal stem cell. 2014 J. Cell. Biochem. pmid:24038457
Völzke A et al. Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells. 2014 Biochim. Biophys. Acta pmid:24064301
Pyne NJ et al. The role of sphingosine 1-phosphate in inflammation and cancer. 2014 Adv Biol Regul pmid:24070975
Nguyen-Tran DH et al. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. 2014 Dis Model Mech pmid:24077965
Tanaka K et al. Anti-interleukin-6 receptor antibody prevents systemic bone mass loss via reducing the number of osteoclast precursors in bone marrow in a collagen-induced arthritis model. 2014 Clin. Exp. Immunol. pmid:24028747
Kihara A Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. 2014 Biochim. Biophys. Acta pmid:23994042
Gorlino CV et al. Neutrophils exhibit differential requirements for homing molecules in their lymphatic and blood trafficking into draining lymph nodes. 2014 J. Immunol. pmid:25015824
Anderson G and Maes M Reconceptualizing adult neurogenesis: role for sphingosine-1-phosphate and fibroblast growth factor-1 in co-ordinating astrocyte-neuronal precursor interactions. 2014 CNS Neurol Disord Drug Targets pmid:24040808
Waeber C and Walther T Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. 2014 Circ. J. pmid:24632793
Willinger T et al. Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling. 2014 J. Exp. Med. pmid:24638168
Purschke WG et al. Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis. 2014 Biochem. J. pmid:24832383
Snider AJ et al. Distinct roles for hematopoietic and extra-hematopoietic sphingosine kinase-1 in inflammatory bowel disease. 2014 PLoS ONE pmid:25460165
Nakanaga K et al. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. 2014 J. Biochem. pmid:24451492
Kim YI et al. An endoplasmic reticulum stress-initiated sphingolipid metabolite, ceramide-1-phosphate, regulates epithelial innate immunity by stimulating β-defensin production. 2014 Mol. Cell. Biol. pmid:25312644
Miller DS Sphingolipid signaling reduces basal P-glycoprotein activity in renal proximal tubule. 2014 J. Pharmacol. Exp. Ther. pmid:24385389
Dai L et al. Sphingosine 1-phosphate: a potential molecular target for ovarian cancer therapy? 2014 Cancer Invest. pmid:24499107
Ito K et al. Integrin α9 on lymphatic endothelial cells regulates lymphocyte egress. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:24516133
Takeshita E et al. Diacylglycerol kinase γ is a novel anionic phospholipid binding protein with a selective binding preference. 2014 Biochem. Biophys. Res. Commun. pmid:24486543
Kamiya T et al. Role of Ca2+ -dependent and Ca2+ -sensitive mechanisms in sphingosine 1-phosphate-induced constriction of isolated porcine retinal arterioles in vitro. 2014 Exp. Eye Res. pmid:24486793
Plano D et al. Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. 2014 J. Med. Chem. pmid:24471412
Nakamura H and Murayama T Role of sphingolipids in arachidonic acid metabolism. 2014 J. Pharmacol. Sci. pmid:24599139
Wang F and Ye P Improving heart function by modulating myocardiocyte autophagy: a possible novel mechanism for cardiovascular protection of high-density lipoprotein. 2014 Lipids Health Dis pmid:25339382
Guo S et al. Higher level of plasma bioactive molecule sphingosine 1-phosphate in women is associated with estrogen. 2014 Biochim. Biophys. Acta pmid:24603322
Keller J et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. 2014 Nat Commun pmid:25333900
Kempf A et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. 2014 PLoS Biol. pmid:24453941
Lepletier A et al. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease. 2014 PLoS Negl Trop Dis pmid:25330249
Tao C et al. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes. 2014 Best Pract. Res. Clin. Endocrinol. Metab. pmid:24417945
Bradley E et al. Critical role of Spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. 2014 PLoS ONE pmid:25330231
Hamidi S et al. TLR2/1 and sphingosine 1-phosphate modulate inflammation, myofibroblast differentiation and cell migration in fibroblasts. 2014 Biochim. Biophys. Acta pmid:24440818
Xu H et al. Sphingosine-1-phosphate receptor agonist, FTY720, restores coronary flow reserve in diabetic rats. 2014 Circ. J. pmid:25319164
Fukui H et al. S1P-Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. 2014 Dev. Cell pmid:25313964
Obinata H et al. Individual variation of human S1P₁ coding sequence leads to heterogeneity in receptor function and drug interactions. 2014 J. Lipid Res. pmid:25293589
Fernández-Pisonero I et al. Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells. 2014 PLoS ONE pmid:25275309
Sassoli C et al. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. 2014 PLoS ONE pmid:25264785
Silva VR et al. Hypothalamic S1P/S1PR1 axis controls energy homeostasis. 2014 Nat Commun pmid:25255053
Hirata N et al. Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. 2014 Nat Commun pmid:25254944
Sutter I et al. Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate. 2014 J. Lipid Res. pmid:24950692
Kim ES et al. Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression. 2014 Oncogene pmid:23955082
St John AL et al. S1P-Dependent trafficking of intracellular yersinia pestis through lymph nodes establishes Buboes and systemic infection. 2014 Immunity pmid:25238098
Davis KM and Isberg RR Plague's partners in crime. 2014 Immunity pmid:25238090
Bi Y et al. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. 2014 Am. J. Pathol. pmid:25111230
Ishitsuka A et al. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. 2014 Int. J. Mol. Med. pmid:25109763
Xiong H et al. SphK1 confers resistance to apoptosis in gastric cancer cells by downregulating Bim via stimulating Akt/FoxO3a signaling. 2014 Oncol. Rep. pmid:25109605
Rolin J and Maghazachi AA Implications of chemokines, chemokine receptors, and inflammatory lipids in atherosclerosis. 2014 J. Leukoc. Biol. pmid:24493826
Zhao X et al. Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. 2014 J. Mol. Cell. Cardiol. pmid:25106095
Li MH et al. Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma. 2014 J. Pediatr. Surg. pmid:25092091
Awojoodu AO et al. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. 2014 Blood pmid:25075126
Belvitch P et al. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics. 2014 Microvasc. Res. pmid:25072537
Mendes-da-Cruz DA et al. Semaphorin 3F and neuropilin-2 control the migration of human T-cell precursors. 2014 PLoS ONE pmid:25068647
Schwalm S et al. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. 2014 Basic Clin. Pharmacol. Toxicol. pmid:23789924
Tsai YC et al. Antiapoptotic agent sphingosine-1-phosphate protects vitrified murine ovarian grafts. 2014 Reprod Sci pmid:23793475
Snelder N et al. Translational pharmacokinetic modeling of fingolimod (FTY720) as a paradigm compound subject to sphingosine kinase-mediated phosphorylation. 2014 Drug Metab. Dispos. pmid:24965813
BÅ‚ogowski W et al. Perioperative release of pro-regenerative biochemical signals from human renal allografts subjected to ischemia-reperfusion injury. 2014 Innate Immun pmid:23608824
Tarbell JM et al. Mechanosensing at the vascular interface. 2014 Annu Rev Biomed Eng pmid:24905872
Potì F et al. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P). 2014 Cardiovasc. Res. pmid:24891400
Chawla S et al. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. 2014 PLoS ONE pmid:24887065
Janes K et al. The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. 2014 J. Biol. Chem. pmid:24876379
Yan W et al. Adiponectin regulates SR Ca(2+) cycling following ischemia/reperfusion via sphingosine 1-phosphate-CaMKII signaling in mice. 2014 J. Mol. Cell. Cardiol. pmid:24852843
Sheridan GK and Dev KK Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. 2014 Sci Rep pmid:24851861
Ni X et al. Interaction of integrin β4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. 2014 J. Cell. Biochem. pmid:24851274
Vanoli E et al. Vagomimetic effects of fingolimod: physiology and clinical implications. 2014 CNS Neurosci Ther pmid:24836740
Zhang GQ et al. Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo. 2014 Sheng Li Xue Bao pmid:24777407
Smyth SS et al. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. 2014 Arterioscler. Thromb. Vasc. Biol. pmid:24482375
Takabe K and Spiegel S Export of sphingosine-1-phosphate and cancer progression. 2014 J. Lipid Res. pmid:24474820
Ishizawa S et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. 2014 Clin. Exp. Nephrol. pmid:24463961
Couttas TA et al. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. 2014 Acta Neuropathol Commun pmid:24456642
Gassowska M et al. Sphingosine kinases/sphingosine-1-phosphate and death Signalling in APP-transfected cells. 2014 Neurochem. Res. pmid:24452756
Borge M et al. The expression of sphingosine-1 phosphate receptor-1 in chronic lymphocytic leukemia cells is impaired by tumor microenvironmental signals and enhanced by piceatannol and R406. 2014 J. Immunol. pmid:25127862
Fujii K et al. Sphingosine 1-phosphate increases an intracellular Ca(2+) concentration via S1P3 receptor in cultured vascular smooth muscle cells. 2014 J. Pharm. Pharmacol. pmid:24450400
Ito S et al. TNF-α production in NKT cell hybridoma is regulated by sphingosine-1-phosphate: implications for inflammation in atherosclerosis. 2014 Coron. Artery Dis. pmid:24448174
Czubowicz K and Strosznajder R Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. 2014 Mol. Neurobiol. pmid:24420784
Kerage D et al. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. 2014 Placenta pmid:24411702
Blaho VA and Hla T An update on the biology of sphingosine 1-phosphate receptors. 2014 J. Lipid Res. pmid:24459205
Abu El-Asrar AM et al. Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. 2014 Lipids Health Dis pmid:25496321
Jensen T et al. The identification of GPR3 inverse agonist AF64394; the first small molecule inhibitor of GPR3 receptor function. 2014 Bioorg. Med. Chem. Lett. pmid:25442311
Ye C et al. Identification of a novel small-molecule agonist for human G protein-coupled receptor 3. 2014 J. Pharmacol. Exp. Ther. pmid:24633425
Pyszko J and Strosznajder JB Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. 2014 Mol. Neurobiol. pmid:24399507
Nishi T et al. Molecular and physiological functions of sphingosine 1-phosphate transporters. 2014 Biochim. Biophys. Acta pmid:23921254
Rao PV Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. 2014 Mar-Apr J Ocul Pharmacol Ther pmid:24283588
Williams PA et al. Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P). 2015 PLoS ONE pmid:25875493
Wang Z et al. The Effect of Sphingosine 1-Phosphate/Sphingosine 1-Phosphate Receptor on Neutrophil Function and the Relevant Signaling Pathway. 2015 Acta Haematol. pmid:25872153
Park ES et al. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. 2015 J. Biol. Chem. pmid:25716317
Rhee SH et al. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall. 2015 J Obstet Gynaecol pmid:25692679
Ji F et al. K6PC-5, a novel sphingosine kinase 1 (SphK1) activator, alleviates dexamethasone-induced damages to osteoblasts through activating SphK1-Akt signaling. 2015 Biochem. Biophys. Res. Commun. pmid:25680461
Xiu L et al. Intracellular sphingosine 1-phosphate contributes to collagen expression of hepatic myofibroblasts in human liver fibrosis independent of its receptors. 2015 Am. J. Pathol. pmid:25432063
Khavandgar Z and Murshed M Sphingolipid metabolism and its role in the skeletal tissues. 2015 Cell. Mol. Life Sci. pmid:25424644
Prüfer N et al. The role of serum amyloid A and sphingosine-1-phosphate on high-density lipoprotein functionality. 2015 Biol. Chem. pmid:25252751
Sorrentino R et al. B cell depletion increases sphingosine-1-phosphate-dependent airway inflammation in mice. 2015 Am. J. Respir. Cell Mol. Biol. pmid:25250941
Abdel-Latif A et al. Lysophospholipids in coronary artery and chronic ischemic heart disease. 2015 Curr. Opin. Lipidol. pmid:26270808
Iwabuchi K et al. Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. 2015 Mediators Inflamm. pmid:26609196
Mahajan-Thakur S et al. Sphingosine-1-Phosphate and Its Receptors: A Mutual Link between Blood Coagulation and Inflammation. 2015 Mediators Inflamm. pmid:26604433
Kassmer SH et al. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. 2015 Nat Commun pmid:26456232
Li C et al. Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3. 2015 J Neuroinflammation pmid:25880547
Mori H et al. Smad3 deficiency leads to mandibular condyle degradation via the sphingosine 1-phosphate (S1P)/S1P3 signaling axis. 2015 Am. J. Pathol. pmid:26272361
Camp SM et al. Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and β-glucuronide-FTY720. 2015 Chem. Phys. Lipids pmid:26272033
Galvani S et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. 2015 Sci Signal pmid:26268607
Malik FA et al. Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity. 2015 PLoS ONE pmid:26079370
Mooren OL et al. Role of N-WASP in Endothelial Monolayer Formation and Integrity. 2015 J. Biol. Chem. pmid:26070569
Blaho VA et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. 2015 Nature pmid:26053123