Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Wu J et al. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. 1995 J. Biol. Chem. pmid:7744787
Rieken S et al. Lysophospholipids control integrin-dependent adhesion in splenic B cells through G(i) and G(12)/G(13) family G-proteins but not through G(q)/G(11). 2006 J. Biol. Chem. pmid:17023430
Su Y et al. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. 1994 J. Biol. Chem. pmid:8206962
Bektas M et al. Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. 2010 J. Biol. Chem. pmid:20097939
Dudek SM et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. 2004 J. Biol. Chem. pmid:15056655
van Koppen C et al. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. 1996 J. Biol. Chem. pmid:8567663
Fu P et al. Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. 2016 J. Biol. Chem. pmid:27864331
Leclercq TM et al. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. 2008 J. Biol. Chem. pmid:18263879
Ki SH et al. Galpha12 specifically regulates COX-2 induction by sphingosine 1-phosphate. Role for JNK-dependent ubiquitination and degradation of IkappaBalpha. 2007 J. Biol. Chem. pmid:17098744
Sutherland CM et al. The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. 2006 J. Biol. Chem. pmid:16522638
Liu M et al. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles. 2015 J. Biol. Chem. pmid:25627684
Herr DR et al. Sphingosine 1-phosphate receptors are essential mediators of eyelid closure during embryonic development. 2013 J. Biol. Chem. pmid:24003216
Dave JM et al. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). 2013 J. Biol. Chem. pmid:24005669
Karaca I et al. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. 2014 J. Biol. Chem. pmid:24808180
Boujaoude LC et al. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. 2001 J. Biol. Chem. pmid:11443135
Paik JH et al. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. 2001 J. Biol. Chem. pmid:11150298
Valentine WJ et al. Subtype-specific residues involved in ligand activation of the endothelial differentiation gene family lysophosphatidic acid receptors. 2008 J. Biol. Chem. pmid:18316373
Berdyshev EV et al. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. 2009 J. Biol. Chem. pmid:19119142
Im DS et al. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. 2000 J. Biol. Chem. pmid:10799507
Kono M et al. Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. 2006 J. Biol. Chem. pmid:16380386
von Otte S et al. Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. 2006 J. Biol. Chem. pmid:16365044
Igarashi J and Michel T Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways. 2001 J. Biol. Chem. pmid:11470796
Olivera A et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. 2006 J. Biol. Chem. pmid:16316995
Xiong Y et al. Sphingosine kinases are not required for inflammatory responses in macrophages. 2013 J. Biol. Chem. pmid:24081141
Zhang W et al. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. 2013 J. Biol. Chem. pmid:24064218
Gennero I et al. Apoptotic effect of sphingosine 1-phosphate and increased sphingosine 1-phosphate hydrolysis on mesangial cells cultured at low cell density. 2002 J. Biol. Chem. pmid:11821388
Young KW et al. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. 2000 J. Biol. Chem. pmid:10954727
Alderton F et al. G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. 2001 J. Biol. Chem. pmid:11278307
Igarashi J et al. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. 2001 J. Biol. Chem. pmid:11278407
Morales-Ruiz M et al. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. 2001 J. Biol. Chem. pmid:11278592
Birchwood CJ et al. Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. 2001 J. Biol. Chem. pmid:11278643
Argraves KM et al. High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. 2008 J. Biol. Chem. pmid:18606817
Yin H et al. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. 2009 J. Biol. Chem. pmid:19286662
Nyalendo C et al. Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573: role in endothelial and tumor cell migration. 2007 J. Biol. Chem. pmid:17389600
Machesky NJ et al. Human cytomegalovirus regulates bioactive sphingolipids. 2008 J. Biol. Chem. pmid:18644793
Liu S et al. Glycogen synthase kinase 3beta is a negative regulator of growth factor-induced activation of the c-Jun N-terminal kinase. 2004 J. Biol. Chem. pmid:15466414
Wang F et al. Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. 1999 J. Biol. Chem. pmid:10585401
Nagiec MM et al. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. 1998 J. Biol. Chem. pmid:9677363
Realini N et al. Acid Ceramidase in Melanoma: EXPRESSION, LOCALIZATION, AND EFFECTS OF PHARMACOLOGICAL INHIBITION. 2016 J. Biol. Chem. pmid:26553872
Rani CS et al. Divergence in signal transduction pathways of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors. Involvement of sphingosine 1-phosphate in PDGF but not EGF signaling. 1997 J. Biol. Chem. pmid:9099730
Endo A et al. Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. 2002 J. Biol. Chem. pmid:11956190
Sano T et al. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. 2002 J. Biol. Chem. pmid:11929870
Spiegel S and Milstien S Sphingosine 1-phosphate, a key cell signaling molecule. 2002 J. Biol. Chem. pmid:12011102
Ma Y et al. Sphingosine activates protein kinase A type II by a novel cAMP-independent mechanism. 2005 J. Biol. Chem. pmid:15883165
Taniguchi M et al. Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. 2012 J. Biol. Chem. pmid:23035115
Geoffroy K et al. Bimodal effect of advanced glycation end products on mesangial cell proliferation is mediated by neutral ceramidase regulation and endogenous sphingolipids. 2004 J. Biol. Chem. pmid:15184394
Xin C et al. Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. 2004 J. Biol. Chem. pmid:15192102
Waggoner DW et al. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. 1996 J. Biol. Chem. pmid:8663293
Fatatis A and Miller RJ Sphingosine and sphingosine 1-phosphate differentially modulate platelet-derived growth factor-BB-induced Ca2+ signaling in transformed oligodendrocytes. 1996 J. Biol. Chem. pmid:8550576
Gómez-Muñoz A et al. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. 1995 J. Biol. Chem. pmid:7592842
Banno Y et al. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. 2001 J. Biol. Chem. pmid:11468290
Takeshita A et al. Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors. 2000 J. Biol. Chem. pmid:10915783
Sauer B et al. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. 2004 J. Biol. Chem. pmid:15247277
Graeler MH et al. Protein kinase C epsilon dependence of the recovery from down-regulation of S1P1 G protein-coupled receptors of T lymphocytes. 2003 J. Biol. Chem. pmid:12782628
Olivera A et al. Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. 2003 J. Biol. Chem. pmid:12963721
Saba JD et al. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. 1997 J. Biol. Chem. pmid:9334171
Coste O et al. Sphingosine 1-phosphate modulates spinal nociceptive processing. 2008 J. Biol. Chem. pmid:18805787
Vessey DA et al. Sphingosine can pre- and post-condition heart and utilizes a different mechanism from sphingosine 1-phosphate. 2008 Mar-Apr J. Biochem. Mol. Toxicol. pmid:18418901
Taha TA et al. Sphingosine kinase: biochemical and cellular regulation and role in disease. 2006 J. Biochem. Mol. Biol. pmid:16584625
Satoh Y et al. Regulation by sphingolipids of the fate of FRTL-5 cells. 2009 J. Biochem. pmid:18953023
Hisano Y et al. The functional roles of S1P in immunity. 2012 J. Biochem. pmid:22923732
Kohno T and Igarashi Y Truncation of the N-terminal ectodomain has implications in the N-glycosylation and transport to the cell surface of Edg-1/S1P1 receptor. 2003 J. Biochem. pmid:14688232
Huang YL et al. Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells. 2009 J. Biochem. pmid:19692429
Einicker-Lamas M et al. Sphingosine-1-phosphate formation activates phosphatidylinositol-4 kinase in basolateral membranes from kidney cells: crosstalk in cell signaling through sphingolipids and phospholipids. 2003 J. Biochem. pmid:14607979
Nakanaga K et al. Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. 2014 J. Biochem. pmid:24451492
Kojima K and Inouye K Activation of matriptase zymogen. 2011 J. Biochem. pmid:21737400
Miura Y et al. Rho-mediated phosphorylation of focal adhesion kinase and myosin light chain in human endothelial cells stimulated with sphingosine 1-phosphate, a bioactive lysophospholipid released from activated platelets. 2000 J. Biochem. pmid:10788802
Yatomi Y et al. Sphingosine 1-phosphate breakdown in platelets. 2004 J. Biochem. pmid:15625319
Hashizume T et al. Sphingosine enhances phosphatidylinositol 4-kinase activity in rabbit platelets. 1996 J. Biochem. pmid:8864845
Takuwa Y et al. The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. 2002 J. Biochem. pmid:12038970
Yang L et al. Sphingosine 1-phosphate formation and intracellular Ca2+ mobilization in human platelets: evaluation with sphingosine kinase inhibitors. 1999 J. Biochem. pmid:10393324
Osada M et al. Involvement of sphingosine 1-phosphate, a platelet-derived bioactive lipid, in contraction of mesangium cells. 2007 J. Biochem. pmid:17646176
Yatomi Y et al. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. 1997 J. Biochem. pmid:9192741
Yokoo E et al. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. 2004 J. Biochem. pmid:15213242
Igarashi Y Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. 1997 J. Biochem. pmid:9498549
Hisano N et al. Quantification of sphingosine derivatives in human platelets: inducible formation of free sphingosine. 1998 J. Biochem. pmid:9538201
Takahashi C et al. Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. 2017 J. Atheroscler. Thromb. pmid:28321011
Ozaki H et al. Sphingosine-1-phosphate signaling in endothelial activation. 2003 J. Atheroscler. Thromb. pmid:14564080
Shikata Y et al. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. 2003 J. Appl. Physiol. pmid:12482769
Park SW et al. Inhibition of sphingosine 1-phosphate receptor 2 protects against renal ischemia-reperfusion injury. 2012 J. Am. Soc. Nephrol. pmid:22095950
Guan Z et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. 2014 J. Am. Soc. Nephrol. pmid:24578134
Cui J et al. Role of ceramide in ischemic preconditioning. 2004 J. Am. Coll. Surg. pmid:15110811
Sattler K et al. Defects of High-Density Lipoproteins in Coronary Artery Disease Caused by Low Sphingosine-1-Phosphate Content: Correction by Sphingosine-1-Phosphate-Loading. 2015 J. Am. Coll. Cardiol. pmid:26403344
Cannavo A et al. β-Blockade Prevents Post-Ischemic Myocardial Decompensation Via βAR-Dependent Protective Sphingosine-1 Phosphate Signaling. 2017 J. Am. Coll. Cardiol. pmid:28683966
Dany M and Elston D Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa. 2017 J. Am. Acad. Dermatol. pmid:28551069
Price MM et al. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. 2013 J. Allergy Clin. Immunol. pmid:22939756
Oskeritzian CA et al. The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. 2015 J. Allergy Clin. Immunol. pmid:25512083
Resop RS et al. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. 2016 J. Allergy Clin. Immunol. pmid:27056271
Haberberger RV et al. Role of sphingosine kinase 1 in allergen-induced pulmonary vascular remodeling and hyperresponsiveness. 2009 J. Allergy Clin. Immunol. pmid:19665772
Zhang BL et al. Sphingosine 1-phosphate acts as an activator for the porcine Gpr3 of constitutively active G protein-coupled receptors. 2012 J Zhejiang Univ Sci B pmid:22761247
Lee C et al. Attenuation of shock-induced acute lung injury by sphingosine kinase inhibition. 2004 J Trauma pmid:15580017
Cho MC et al. Involvement of sphingosine-1-phosphate/RhoA/Rho-kinase signaling pathway in corporal fibrosis following cavernous nerve injury in male rats. 2011 J Sex Med pmid:21143420
Jiang H et al. Application of ultra-performance liquid chromatography coupled with mass spectrometry to metabonomic study on spontaneously hypertensive rats and intervention effects of Ping Gan prescription. 2012 J Sep Sci pmid:22282408
Surya VN et al. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. 2016 J R Soc Interface pmid:27974574
Wang H et al. Potential serum biomarkers from a metabolomics study of autism. 2016 J Psychiatry Neurosci pmid:26395811
Hardin C et al. Glassy dynamics, cell mechanics, and endothelial permeability. 2013 J Phys Chem B pmid:23638866
Navarrete A et al. A metabolomic approach shows sphingosine 1-phosphate and lysophospholipids as mediators of the therapeutic effect of liver growth factor in emphysema. 2017 J Pharm Biomed Anal pmid:28314215
Takeshita A et al. Sphingosine 1-phosphate acts as a signal molecule in ceramide signal transduction of TNF-alpha-induced activator protein-1 in osteoblastic cell line MC3T3-E1 cells. 2005 J Oral Sci pmid:15881228
Rao PV Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. 2014 Mar-Apr J Ocul Pharmacol Ther pmid:24283588
Rhee SH et al. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall. 2015 J Obstet Gynaecol pmid:25692679