Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Setoguchi R IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. 2016 Int. Immunol. pmid:26857736
Gao D et al. Metabolomics study on the antitumor effect of marine natural compound flexibilide in HCT-116 colon cancer cell line. 2016 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:26859520
Luo B et al. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. 2016 Immunity pmid:26872696
Ko P et al. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion. 2016 Sci Rep pmid:26877098
Tang X et al. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate. 2016 J. Lipid Res. pmid:26884614
Chumanevich A et al. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2. 2016 Mediators Inflamm. pmid:26884643
Uranbileg B et al. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence. 2016 PLoS ONE pmid:26886371
Bien-Möller S et al. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme. 2016 Oncotarget pmid:26887055
Medina CB and Ravichandran KS Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes. 2016 Cell Death Differ. pmid:26891690
Park K et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. 2016 Proc. Natl. Acad. Sci. U.S.A. pmid:26903652
Yang Y et al. Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions. 2016 Neurochem. Int. pmid:26921668
Liu W et al. Sphingosine-1-phosphate receptor 2 mediates endothelial cells dysfunction by PI3K-Akt pathway under high glucose condition. 2016 Eur. J. Pharmacol. pmid:26921757
Watterson SH et al. Potent and Selective Agonists of Sphingosine 1-Phosphate 1 (S1P1): Discovery and SAR of a Novel Isoxazole Based Series. 2016 J. Med. Chem. pmid:26924461
Grammatikos G et al. Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. 2016 Oncotarget pmid:26933996
Kalhori V et al. FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion. 2016 Endocr. Relat. Cancer pmid:26935838
Guerrero M et al. Sphingosine 1-phosphate receptor 1 agonists: a patent review (2013-2015). 2016 Expert Opin Ther Pat pmid:26947494
Jin J et al. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate. 2016 Sci Rep pmid:26948042
Chen C et al. Polydatin attenuates AGEs-induced upregulation of fibronectin and ICAM-1 in rat glomerular mesangial cells and db/db diabetic mice kidneys by inhibiting the activation of the SphK1-S1P signaling pathway. 2016 Mol. Cell. Endocrinol. pmid:26948947
Vito CD et al. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. 2016 Platelets pmid:26950429
Chawla S et al. S1P prophylaxis mitigates acute hypobaric hypoxia-induced molecular, biochemical, and metabolic disturbances: A preclinical report. 2016 IUBMB Life pmid:26959531
Brinck JW et al. Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection. 2016 Arterioscler. Thromb. Vasc. Biol. pmid:26966278
Aoki M et al. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential. 2016 Mediators Inflamm. pmid:26966342
Pyne S et al. Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. 2016 Prog. Lipid Res. pmid:26970273
Bae SJ et al. The circulating sphingosine-1-phosphate level predicts incident fracture in postmenopausal women: a 3.5-year follow-up observation study. 2016 Osteoporos Int pmid:26984570
Frej C et al. Sphingosine 1-phosphate and its carrier apolipoprotein M in human sepsis and in Escherichia coli sepsis in baboons. 2016 J. Cell. Mol. Med. pmid:26990127
Cheng JC et al. Sphingosine-1-phosphate induces COX-2 expression and PGE2 production in human granulosa cells through a S1P1/3-mediated YAP signaling. 2016 Cell. Signal. pmid:26994820
Lv M et al. Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion. 2016 Inflamm. Res. pmid:27002656
Zhang L et al. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels. 2016 Microcirculation pmid:27015105
Adams DR et al. Sphingosine Kinases: Emerging Structure-Function Insights. 2016 Trends Biochem. Sci. pmid:27021309
Guo J et al. Identification and synthesis of potent and selective pyridyl-isoxazole based agonists of sphingosine-1-phosphate 1 (S1P1). 2016 Bioorg. Med. Chem. Lett. pmid:27055941
Resop RS et al. Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. 2016 J. Allergy Clin. Immunol. pmid:27056271
Koresawa R et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. 2016 Br. J. Haematol. pmid:27061580
Anbazhagan AN et al. Transcriptional modulation of SLC26A3 (DRA) by sphingosine-1-phosphate. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:27079615
Castaldi A et al. Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs. 2016 Cell. Signal. pmid:27094722
Cai Y et al. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. 2016 Sci Signal pmid:27095594
Riganti L et al. Sphingosine-1-Phosphate (S1P) Impacts Presynaptic Functions by Regulating Synapsin I Localization in the Presynaptic Compartment. 2016 J. Neurosci. pmid:27098703
Li N and Zhang F Implication of sphingosin-1-phosphate in cardiovascular regulation. 2016 Front Biosci (Landmark Ed) pmid:27100508
Crespo I et al. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. 2016 J. Pineal Res. pmid:27101794
Sanchez T Sphingosine-1-Phosphate Signaling in Endothelial Disorders. 2016 Curr Atheroscler Rep pmid:27115142
Jin L et al. The SphKs/S1P/S1PR1 axis in immunity and cancer: more ore to be mined. 2016 World J Surg Oncol pmid:27129720
Barnawi J et al. Pro-phagocytic Effects of Thymoquinone on Cigarette Smoke-exposed Macrophages Occur by Modulation of the Sphingosine-1-phosphate Signalling System. 2016 COPD pmid:27144721
Patmanathan SN et al. Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2. 2016 Sci Rep pmid:27160553
Tafelmeier M et al. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles. 2017 J. Steroid Biochem. Mol. Biol. pmid:27163393
Ohtoyo M et al. Component of Caramel Food Coloring, THI, Causes Lymphopenia Indirectly via a Key Metabolic Intermediate. 2016 Cell Chem Biol pmid:27185637
Zhang XE et al. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. 2016 PLoS ONE pmid:27187066
Nagahashi M et al. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods. 2016 J Mammary Gland Biol Neoplasia pmid:27194029
Sauvé M et al. Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes. 2016 Diabetes pmid:27207546
Versmissen J et al. Familial hypercholesterolaemia: cholesterol efflux and coronary disease. 2016 Eur. J. Clin. Invest. pmid:27208892
Gudipaty SA and Rosenblatt J Epithelial cell extrusion: Pathways and pathologies. 2017 Semin. Cell Dev. Biol. pmid:27212253
Marfia G et al. The Adipose Mesenchymal Stem Cell Secretome Inhibits Inflammatory Responses of Microglia: Evidence for an Involvement of Sphingosine-1-Phosphate Signalling. 2016 Stem Cells Dev. pmid:27217090
Bao XH et al. [Role and related mechanism of S1P/S1P1 signal pathway during post conditioning of hypertrophic cardiomyocytes]. 2016 Zhonghua Xin Xue Guan Bing Za Zhi pmid:27220580
Mirzaian M et al. Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with (13)C-encoded natural S1P as internal standard. 2016 Clin. Chim. Acta pmid:27221202
Hollands A et al. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity. 2016 J. Biol. Chem. pmid:27226531
Puli MR et al. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. 2016 Planta pmid:27233507
Juif PE et al. Clinical pharmacology, efficacy, and safety aspects of sphingosine-1-phosphate receptor modulators. 2016 Expert Opin Drug Metab Toxicol pmid:27249325
Gharbaran R Insights into the molecular roles of heparan sulfate proteoglycans (HSPGs-syndecans) in autocrine and paracrine growth factor signaling in the pathogenesis of Hodgkin's lymphoma. 2016 Tumour Biol. pmid:27317256
Cantalupo A and Di Lorenzo A S1P Signaling and De Novo Biosynthesis in Blood Pressure Homeostasis. 2016 J. Pharmacol. Exp. Ther. pmid:27317800
Yang Z et al. TGR5 activation suppressed S1P/S1P2 signaling and resisted high glucose-induced fibrosis in glomerular mesangial cells. 2016 Pharmacol. Res. pmid:27317945
Tsai HC and Han MH Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. 2016 Drugs pmid:27318702
Pierucci F et al. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. 2017 Arch. Toxicol. pmid:27318803
Chakrabarti SS et al. Ceramide and Sphingosine-1-Phosphate in Cell Death Pathways : Relevance to the Pathogenesis of Alzheimer's Disease. 2016 Curr Alzheimer Res pmid:27335046
Hernández-Coronado CG et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. 2016 Gen. Comp. Endocrinol. pmid:27342378
Harijith A et al. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. 2016 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:27343196
Nagura Y et al. Regulation of the lysophosphatidylserine and sphingosine 1-phosphate levels in autologous whole blood by the pre-storage leukocyte reduction. 2016 Transfus Med pmid:27350440
Rodvold JJ and Zanetti M Tumor microenvironment on the move and the Aselli connection. 2016 Sci Signal pmid:27353363
Jung M et al. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. 2016 Sci Signal pmid:27353364
Tiper IV et al. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. 2016 Pathog Dis pmid:27354294
Sanagawa A et al. Sphingosine 1‑phosphate induced by hypoxia increases the expression of PAI‑1 in HepG2 cells via HIF‑1α. 2016 Mol Med Rep pmid:27357063
Egom EE et al. Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes. 2016 Mol. Cell. Biochem. pmid:27372350
Liu X et al. ApoA-I induces S1P release from endothelial cells through ABCA1 and SR-BI in a positive feedback manner. 2016 J. Physiol. Biochem. pmid:27377933
Tong S et al. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. 2016 J. Biol. Chem. pmid:27405756
Adamiak M et al. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation. 2016 Cell Transplant pmid:27412411
Zhang Q et al. Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1[Formula: see text]. 2016 Am. J. Chin. Med. pmid:27430910
Poissonnier A et al. CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice. 2016 Immunity pmid:27438772
Fleming JK et al. A novel approach for measuring sphingosine-1-phosphate and lysophosphatidic acid binding to carrier proteins using monoclonal antibodies and the Kinetic Exclusion Assay. 2016 J. Lipid Res. pmid:27444045
Nagahashi M et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. 2016 J. Lipid Res. pmid:27459945
Evangelisti C et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. 2016 Leukemia pmid:27461062
Moruno Manchon JF et al. SPHK1/sphingosine kinase 1-mediated autophagy differs between neurons and SH-SY5Y neuroblastoma cells. 2016 Autophagy pmid:27467777
Viswanathan P et al. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. 2016 Biochem. Biophys. Res. Commun. pmid:27473658
Zhang H et al. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. 2016 Sci Rep pmid:27476912
Vogt D and Stark H Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. 2017 Med Res Rev pmid:27480072
Hashimoto Y et al. Sphingosine-1-phosphate-enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells. 2016 Cell Biol. Int. pmid:27486054
Al Alam N and Kreydiyyeh SI FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2. 2016 Biochem. Cell Biol. pmid:27501354
Gstalder C et al. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model. 2016 Mol. Cancer Ther. pmid:27507852
Harris CM et al. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats. 2016 J. Pharmacol. Exp. Ther. pmid:27519818
Van Veldhoven PP et al. A facile enzymatic synthesis of sphingosine-1-phosphate and dihydrosphingosine-1-phosphate. 1989 J. Lipid Res. pmid:2754341
Chang N et al. HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis. 2017 J. Mol. Med. pmid:27543493
Nojima H et al. Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes. 2016 PLoS ONE pmid:27551720
Zeng Y et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. 2016 Oncotarget pmid:27556509
Dong T et al. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. 2016 J Neuroinflammation pmid:27561600
Sasset L et al. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. 2016 Trends Endocrinol. Metab. pmid:27562337
Nagahashi M et al. High levels of sphingolipids in human breast cancer. 2016 J. Surg. Res. pmid:27565080
Thieme M et al. Sphingosine-1-phosphate modulators in inflammatory skin diseases - lining up for clinical translation. 2017 Exp. Dermatol. pmid:27574180
Machida T et al. Cellular function and signaling pathways of vascular smooth muscle cells modulated by sphingosine 1-phosphate. 2016 J. Pharmacol. Sci. pmid:27581589
Gazit SL et al. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. 2016 Circ. Res. pmid:27582371
Hamidi Shishavan M et al. Differential Effects of Long Term FTY720 Treatment on Endothelial versus Smooth Muscle Cell Signaling to S1P in Rat Mesenteric Arteries. 2016 PLoS ONE pmid:27583547
Neubauer HA et al. An oncogenic role for sphingosine kinase 2. 2016 Oncotarget pmid:27588496
Chen W et al. Sphingosine 1-phosphate in metabolic syndrome (Review). 2016 Int. J. Mol. Med. pmid:27600830
Higashi K et al. Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. 2016 Bone pmid:27612439
Pruvost R and Le Stunff H [Sphingosine kinase-1: role in non alcoholic fatty liver disease]. Med Sci (Paris) pmid:27615179