Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Pyne S and Pyne NJ Sphingosine 1-phosphate signalling in mammalian cells. 2000 Biochem. J. pmid:10880336
Sharma C et al. Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: mechanism of action. 2000 Chem. Phys. Lipids pmid:10660207
Vasta V et al. Sphingosine 1-phosphate induces arachidonic acid mobilization in A549 human lung adenocarcinoma cells. 2000 Biochim. Biophys. Acta pmid:10601704
Pyne S and Pyne N Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. 2000 Pharmacol. Ther. pmid:11150592
Conway A et al. Ceramide-dependent regulation of p42/p44 mitogen-activated protein kinase and c-Jun N-terminal-directed protein kinase in cultured airway smooth muscle cells. 2000 Cell. Signal. pmid:11152959
Olivera A et al. Assaying sphingosine kinase activity. 2000 Meth. Enzymol. pmid:10563328
Brindley DN et al. Analysis of ceramide 1-phosphate and sphingosine-1-phosphate phosphatase activities. 2000 Meth. Enzymol. pmid:10563330
Rümenapp U et al. Sphingolipid receptor signaling and function in human bladder carcinoma cells: inhibition of LPA- but enhancement of thrombin-stimulated cell motility. 2000 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10651140
Lee OH et al. Sphingosine 1-phosphate stimulates tyrosine phosphorylation of focal adhesion kinase and chemotactic motility of endothelial cells via the G(i) protein-linked phospholipase C pathway. 2000 Biochem. Biophys. Res. Commun. pmid:10652210
Sato K et al. Differential roles of Edg-1 and Edg-5, sphingosine 1-phosphate receptors, in the signaling pathways in C6 glioma cells. 2000 Brain Res. Mol. Brain Res. pmid:11146117
Hla T et al. Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. 2000 Ann. N. Y. Acad. Sci. pmid:10818438
Spiegel S Sphingosine 1-phosphate: a ligand for the EDG-1 family of G-protein-coupled receptors. 2000 Ann. N. Y. Acad. Sci. pmid:10818441
Ancellin N and Hla T Switching intracellular signaling pathways to study sphingosine 1-phosphate receptors. 2000 Ann. N. Y. Acad. Sci. pmid:10818459
Yamamura S et al. Sphingosine-1-phosphate inhibits haptotactic motility by overproduction of focal adhesion sites in B16 melanoma cells through EDG-induced activation of Rho. 2000 Ann. N. Y. Acad. Sci. pmid:10818470
Gallois C et al. Endothelin-1 stimulates sphingosine kinase in human hepatic stellate cells. A novel role for sphingosine-1-P as a mediator of growth inhibition. 2000 Ann. N. Y. Acad. Sci. pmid:10818472
Gennero I et al. Effect of sphingosine-1-phosphate and analogues of lysophosphatidic acid on mesangial cell proliferation. 2000 Ann. N. Y. Acad. Sci. pmid:10818478
Alessenko AV The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death. 2000 Membr Cell Biol pmid:10779176
Miura Y et al. Rho-mediated phosphorylation of focal adhesion kinase and myosin light chain in human endothelial cells stimulated with sphingosine 1-phosphate, a bioactive lysophospholipid released from activated platelets. 2000 J. Biochem. pmid:10788802
Im DS et al. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. 2000 J. Biol. Chem. pmid:10799507
Goetzl EJ et al. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. 2000 J. Immunol. pmid:10799850
Nava VE et al. Functional characterization of human sphingosine kinase-1. 2000 FEBS Lett. pmid:10802064
Spiegel S and Milstien S Functions of a new family of sphingosine-1-phosphate receptors. 2000 Biochim. Biophys. Acta pmid:10760461
Panetti TS et al. Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. 2000 Arterioscler. Thromb. Vasc. Biol. pmid:10764666
Boguslawski G et al. Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. 2000 Biochem. Biophys. Res. Commun. pmid:10833459
Kimura T et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. 2000 Biochem. J. pmid:10794715
Van Brocklyn JR et al. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. 2000 Blood pmid:10753843
English D et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. 2000 FASEB J. pmid:11053247
Meacci E et al. Permissive role of protein kinase C alpha but not protein kinase C delta in sphingosine 1-phosphate-induced Rho A activation in C2C12 myoblasts. 2000 FEBS Lett. pmid:11018530
Sato TN A new role of lipid receptors in vascular and cardiac morphogenesis. 2000 J. Clin. Invest. pmid:11032853
Liu Y et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. 2000 J. Clin. Invest. pmid:11032855
Xia P et al. An oncogenic role of sphingosine kinase. 2000 Curr. Biol. pmid:11114522
Okamoto H et al. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. 2000 Mol. Cell. Biol. pmid:11094076
Murata N et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. 2000 Biochem. J. pmid:11104690
Shimizu H et al. Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets. 2000 Endocr. J. pmid:11036869
MacLennan AJ et al. Antisense studies in PC12 cells suggest a role for H218, a sphingosine 1-phosphate receptor, in growth-factor-induced cell-cell interaction and neurite outgrowth. 2000 Dev. Neurosci. pmid:10965150
Nakajima N et al. Expression and characterization of Edg-1 receptors in rat cardiomyocytes: calcium deregulation in response to sphingosine 1-phosphate. 2000 Eur. J. Biochem. pmid:10971577
Parrill AL et al. Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. 2000 J. Biol. Chem. pmid:10982820
Davaille J et al. Antiproliferative properties of sphingosine 1-phosphate in human hepatic myofibroblasts. A cyclooxygenase-2 mediated pathway. 2000 J. Biol. Chem. pmid:10942778
Pitson SM et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. 2000 J. Biol. Chem. pmid:10944534
Nugent D and Xu Y Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. 2000 Platelets pmid:10938902
Young KW et al. Effect of dimethylsphingosine on muscarinic M(3) receptor signalling in SH-SY5Y cells. 2000 Eur. J. Pharmacol. pmid:10940357
Bischoff A et al. Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. 2000 Br. J. Pharmacol. pmid:10952677
Bischoff A et al. Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. 2000 Br. J. Pharmacol. pmid:10952678
Shin Y et al. Diverse effects of sphingosine on calcium mobilization and influx in differentiated HL-60 cells. 2000 Cell Calcium pmid:10859593
Alemany R et al. Stimulation of sphingosine-1-phosphate formation by the P2Y(2) receptor in HL-60 cells: Ca(2+) requirement and implication in receptor-mediated Ca(2+) mobilization, but not MAP kinase activation. 2000 Mol. Pharmacol. pmid:10953041
Young KW et al. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. 2000 J. Biol. Chem. pmid:10954727
Peyruchaud O and Mosher DF Differential stimulation of signaling pathways initiated by Edg-2 in response to lysophosphatidic acid or sphingosine-1-phosphate. 2000 Cell. Mol. Life Sci. pmid:10961347
Casper RF and Jurisicova A Protecting the female germ line from cancer therapy. 2000 Nat. Med. pmid:11017136
Morita Y et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. 2000 Nat. Med. pmid:11017141
Himmel HM et al. Evidence for Edg-3 receptor-mediated activation of I(K.ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes. 2000 Mol. Pharmacol. pmid:10908314
Driever W Developmental biology. Bringing two hearts together. 2000 Nature pmid:10910341
Kupperman E et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. 2000 Nature pmid:10910360
Meacci E et al. Receptor-activated phospholipase D is present in caveolin-3-enriched light membranes of C2C12 myotubes. 2000 FEBS Lett. pmid:10802049
Racké K et al. Potential role of EDG receptors and lysophospholipids as their endogenous ligands in the respiratory tract. 2000 Pulm Pharmacol Ther pmid:10873548
Sugiyama A et al. Effects of sphingosine 1-phosphate, a naturally occurring biologically active lysophospholipid, on the rat cardiovascular system. 2000 Jpn. J. Pharmacol. pmid:10875754
Spiegel S and Milstien S Sphingosine-1-phosphate: signaling inside and out. 2000 FEBS Lett. pmid:10878250
Cooke ME et al. Contraction of collagen matrices mediated by alpha2beta1A and alpha(v)beta3 integrins. 2000 J. Cell. Sci. pmid:10852817
Yanai N et al. Sphingosine-1-phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers. 2000 Blood pmid:10891442
Prieschl EE and Baumruker T Beyond a structural component: sphingolipids in immunology. 2000 Arch. Immunol. Ther. Exp. (Warsz.) pmid:10912620
Ikeda H et al. Biological activities of novel lipid mediator sphingosine 1-phosphate in rat hepatic stellate cells. 2000 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:10915638
Yamazaki Y et al. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. 2000 Biochem. Biophys. Res. Commun. pmid:10679247
Lee H et al. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. 2000 Am. J. Physiol., Cell Physiol. pmid:10712250
Motohashi K et al. Identification of lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate. 2000 FEBS Lett. pmid:10692584
Sugiyama A et al. Sphingosine 1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart. 2000 Cardiovasc. Res. pmid:10727660
Kozawa O et al. Sphingosine 1-phosphate amplifies phosphoinositide hydrolysis stimulated by prostaglandin f2 alpha in osteoblasts: involvement of p38MAP kinase. 2000 Prostaglandins Leukot. Essent. Fatty Acids pmid:10913228
Orlati S et al. Sphingosine-1-phosphate activates phospholipase D in human airway epithelial cells via a G protein-coupled receptor. 2000 Arch. Biochem. Biophys. pmid:10683250
Okamoto H et al. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. 2000 Thromb. Res. pmid:10942792
Takeshita A et al. Selective stimulation by ceramide of the expression of the alpha isoform of retinoic acid and retinoid X receptors in osteoblastic cells. A role of sphingosine 1-phosphate-mediated AP-1 in the ligand-dependent transcriptional activity of these receptors. 2000 J. Biol. Chem. pmid:10915783
Nanjundan M and Possmayer F Characterization of the pulmonary N-ethylmaleimide-insensitive phosphatidate phosphohydrolase. 2000 Jul-Aug Exp. Lung Res. pmid:10914334
Osawa Y et al. TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. 2001 J. Immunol. pmid:11418646
Boujaoude LC et al. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. 2001 J. Biol. Chem. pmid:11443135
Karliner JS et al. The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. 2001 J. Mol. Cell. Cardiol. pmid:11549349
Castillo SS and Teegarden D Ceramide conversion to sphingosine-1-phosphate is essential for survival in C3H10T1/2 cells. 2001 J. Nutr. pmid:11694603
Lyons JM and Karin NJ A role for G protein-coupled lysophospholipid receptors in sphingolipid-induced Ca2+ signaling in MC3T3-E1 osteoblastic cells. 2001 J. Bone Miner. Res. pmid:11697799
Hornuss C et al. Human and rat alveolar macrophages express multiple EDG receptors. 2001 Eur. J. Pharmacol. pmid:11698050
Yoshida A and Ueda H Neurobiology of the Edg2 lysophosphatidic acid receptor. 2001 Jpn. J. Pharmacol. pmid:11700008
Im DS et al. Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P5 (Edg-8): structure-activity relationship of sphingosine1-phosphate receptors. 2001 Biochemistry pmid:11705398
Rosenfeldt HM et al. The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. 2001 Biochem. Soc. Trans. pmid:11709084
Manggau M et al. 1Alpha,25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate. 2001 J. Invest. Dermatol. pmid:11710939
Rosenfeldt HM et al. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. 2001 FASEB J. pmid:11726541
Lampasso JD et al. Sphingosine-1-phosphate effects on PKC isoform expression in human osteoblastic cells. 2001 Prostaglandins Leukot. Essent. Fatty Acids pmid:11728164
Hla T et al. Lysophospholipids--receptor revelations. 2001 Science pmid:11729304
Muraki K and Imaizumi Y A novel function of sphingosine-1-phosphate to activate a non-selective cation channel in human endothelial cells. 2001 J. Physiol. (Lond.) pmid:11731576
Tamama K et al. Extracellular mechanism through the Edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells. 2001 Biochem. J. pmid:11115407
Sullards MC and Merrill AH Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. 2001 Sci. STKE pmid:11752637
Okajima F [Establishment of the method for the measurement of sphingosine-1-phosphate in biological samples and its application for S1P research]. 2001 Nippon Yakurigaku Zasshi pmid:11778456
Tosaka M et al. Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: possible role in pathogenesis of cerebral vasospasm. 2001 Stroke pmid:11739995
Ohanian J and Ohanian V Sphingolipids in mammalian cell signalling. 2001 Cell. Mol. Life Sci. pmid:11814056
Wang DA et al. A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. 2001 J. Biol. Chem. pmid:11604399
Kralik SF et al. A method for quantitative extraction of sphingosine 1-phosphate into organic solvent. 2001 Anal. Biochem. pmid:11444818
Wells CD et al. Identification of potential mechanisms for regulation of p115 RhoGEF through analysis of endogenous and mutant forms of the exchange factor. 2001 J. Biol. Chem. pmid:11384980
Liu F et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. 2001 Am. J. Respir. Cell Mol. Biol. pmid:11415936
Olorundare OE et al. Assembly of a fibronectin matrix by adherent platelets stimulated by lysophosphatidic acid and other agonists. 2001 Blood pmid:11418470
Osawa Y et al. Sphingosine kinase regulates hepatoma cell differentiation: roles of hepatocyte nuclear factor and retinoid receptor. 2001 Biochem. Biophys. Res. Commun. pmid:11520048
Repp H et al. Activation of a Ca2+-dependent K+ current in mouse fibroblasts by sphingosine-1-phosphate involves the protein tyrosine kinase c-Src. 2001 Naunyn Schmiedebergs Arch. Pharmacol. pmid:11284444
Ruwisch L et al. An improved high-performance liquid chromatographic method for the determination of sphingosine-1-phosphate in complex biological materials. 2001 Naunyn Schmiedebergs Arch. Pharmacol. pmid:11284453
Aas V et al. Fibronectin promotes calcium signaling by interferon-gamma in human neutrophils via G-protein and sphingosine kinase-dependent mechanisms. 2001 Cell Commun. Adhes. pmid:11936187
Banno Y et al. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. 2001 J. Biol. Chem. pmid:11468290
Tilly JL Emerging technologies to control oocyte apoptosis are finally treading on fertile ground. 2001 ScientificWorldJournal pmid:12805661
Alemany R et al. Depolarisation induces rapid and transient formation of intracellular sphingosine-1-phosphate. 2001 FEBS Lett. pmid:11741596