Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Dantas AP et al. Sphingosine 1-phosphate and control of vascular tone. 2003 Am. J. Physiol. Heart Circ. Physiol. pmid:12742827
Asada S et al. Downregulation of Dicer expression by serum withdrawal sensitizes human endothelial cells to apoptosis. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18978195
Vessey DA et al. P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2X₇ channels. 2011 Am. J. Physiol. Heart Circ. Physiol. pmid:21685263
Adamson RH et al. Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. 2012 Am. J. Physiol. Heart Circ. Physiol. pmid:22427519
Landeen LK et al. Sphingosine-1-phosphate receptor expression in cardiac fibroblasts is modulated by in vitro culture conditions. 2007 Am. J. Physiol. Heart Circ. Physiol. pmid:17337593
Means CK et al. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. 2007 Am. J. Physiol. Heart Circ. Physiol. pmid:17293497
Zhang F et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. 2016 Am. J. Physiol. Heart Circ. Physiol. pmid:26589326
Minnear FL et al. Sphingosine 1-phosphate prevents platelet-activating factor-induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive. 2005 Am. J. Physiol. Heart Circ. Physiol. pmid:15778280
Jin ZQ et al. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. 2002 Am. J. Physiol. Heart Circ. Physiol. pmid:12003800
Patschan S et al. Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18203850
Stone ML et al. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25910934
Nishiuma T et al. Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. 2008 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:18359884
Harijith A et al. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. 2016 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:27343196
Sparkman L et al. Ceramide decreases surfactant protein B gene expression via downregulation of TTF-1 DNA binding activity. 2006 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:16183668
Karmouty-Quintana H et al. Treatment with a sphingosine-1-phosphate analog inhibits airway remodeling following repeated allergen exposure. 2012 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:22287614
Sun X et al. Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome. 2013 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:23911438
Chen LY et al. Cytosolic phospholipase A2alpha activation induced by S1P is mediated by the S1P3 receptor in lung epithelial cells. 2008 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:18502815
Yin Z and Watsky MA Chloride channel activity in human lung fibroblasts and myofibroblasts. 2005 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:15681397
Bhattacharya M et al. IQGAP1 is necessary for pulmonary vascular barrier protection in murine acute lung injury and pneumonia. 2012 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:22561460
Choi S et al. A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26361873
Szczepaniak WS et al. S1P2 receptor-dependent Rho-kinase activation mediates vasoconstriction in the murine pulmonary circulation induced by sphingosine 1-phosphate. 2010 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:20435688
Schaphorst KL et al. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. 2003 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:12626332
Wadgaonkar R et al. Differential regulation of sphingosine kinases 1 and 2 in lung injury. 2009 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:19168577
Schweitzer KS et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25979079
Johnstone ED et al. Epidermal growth factor and sphingosine-1-phosphate stimulate Na+/H+ exchanger activity in the human placental syncytiotrophoblast. 2007 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:17913870
Kirby RJ et al. Dynamic regulation of sphingosine-1-phosphate homeostasis during development of mouse metanephric kidney. 2009 Am. J. Physiol. Renal Physiol. pmid:19073640
Kim M et al. Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways. 2007 Am. J. Physiol. Renal Physiol. pmid:17898040
Zhu Q et al. A novel lipid natriuretic factor in the renal medulla: sphingosine-1-phosphate. 2011 Am. J. Physiol. Renal Physiol. pmid:21478479
Jackson EK Role of sphingosine-1-phosphate in the renal medulla. 2011 Am. J. Physiol. Renal Physiol. pmid:21511695
Zhou H and Murthy KS Distinctive G protein-dependent signaling in smooth muscle by sphingosine 1-phosphate receptors S1P1 and S1P2. 2004 Am. J. Physiol., Cell Physiol. pmid:15075212
Hung RJ et al. Assembly of adherens junctions is required for sphingosine 1-phosphate-induced matriptase accumulation and activation at mammary epithelial cell-cell contacts. 2004 Am. J. Physiol., Cell Physiol. pmid:15075215
Danieli-Betto D et al. Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration. 2010 Am. J. Physiol., Cell Physiol. pmid:20042733
Igarashi J et al. Transforming growth factor-beta1 downregulates caveolin-1 expression and enhances sphingosine 1-phosphate signaling in cultured vascular endothelial cells. 2009 Am. J. Physiol., Cell Physiol. pmid:19710365
Oberst MD et al. HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. 2005 Am. J. Physiol., Cell Physiol. pmid:15800053
Lee MS et al. Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. 2005 Am. J. Physiol., Cell Physiol. pmid:15590895
Whetzel AM et al. Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2 action in endothelium through induction of MAP kinase phosphatase-3. 2009 Am. J. Physiol., Cell Physiol. pmid:19091959
Chang CL et al. S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. 2009 Am. J. Physiol., Cell Physiol. pmid:19474291
Zanin M et al. Trophic action of sphingosine 1-phosphate in denervated rat soleus muscle. 2008 Am. J. Physiol., Cell Physiol. pmid:17942639
Kim MY et al. Sphingosine-1-phosphate activates BKCa channels independently of G protein-coupled receptor in human endothelial cells. 2006 Am. J. Physiol., Cell Physiol. pmid:16267108
Sarai K et al. Endothelial barrier protection by FTY720 under hyperglycemic condition: involvement of focal adhesion kinase, small GTPases, and adherens junction proteins. 2009 Am. J. Physiol., Cell Physiol. pmid:19657053
Fan A et al. Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. 2016 Am. J. Physiol., Cell Physiol. pmid:26669941
Lee H et al. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. 2000 Am. J. Physiol., Cell Physiol. pmid:10712250
Danieli-Betto D et al. Sphingosine 1-phosphate protects mouse extensor digitorum longus skeletal muscle during fatigue. 2005 Am. J. Physiol., Cell Physiol. pmid:15659717
Formigli L et al. Sphingosine 1-phosphate induces Ca2+ transients and cytoskeletal rearrangement in C2C12 myoblastic cells. 2002 Am. J. Physiol., Cell Physiol. pmid:11997251
Sumida GM and Stamer WD S1Pâ‚‚ receptor regulation of sphingosine-1-phosphate effects on conventional outflow physiology. 2011 Am. J. Physiol., Cell Physiol. pmid:21289286
Bucki R et al. Plasma gelsolin modulates cellular response to sphingosine 1-phosphate. 2010 Am. J. Physiol., Cell Physiol. pmid:20810916
Leiber D et al. Exogenous sphingosine 1-phosphate and sphingosine kinase activated by endothelin-1 induced myometrial contraction through differential mechanisms. 2007 Am. J. Physiol., Cell Physiol. pmid:16956968
Lee H et al. Lysophospholipids increase ICAM-1 expression in HUVEC through a Gi- and NF-kappaB-dependent mechanism. 2004 Am. J. Physiol., Cell Physiol. pmid:15294853
Igarashi J et al. Hydrogen peroxide induces S1P1 receptors and sensitizes vascular endothelial cells to sphingosine 1-phosphate, a platelet-derived lipid mediator. 2007 Am. J. Physiol., Cell Physiol. pmid:16943246
Dela Paz NG et al. Shear stress induces Gα activation independently of G protein-coupled receptor activation in endothelial cells. 2017 Am. J. Physiol., Cell Physiol. pmid:28148497