Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Payne SG et al. Sphingosine-1-phosphate: dual messenger functions. 2002 FEBS Lett. pmid:12401202
Lampasso JD et al. Role of protein kinase C alpha in primary human osteoblast proliferation. 2002 J. Bone Miner. Res. pmid:12412804
Högback S et al. Ceramide 1-phosphate increases intracellular free calcium concentrations in thyroid FRTL-5 cells: evidence for an effect mediated by inositol 1,4,5-trisphosphate and intracellular sphingosine 1-phosphate. 2003 Biochem. J. pmid:12416995
Napier JA et al. A new class of lipid desaturase central to sphingolipid biosynthesis and signalling. 2002 Trends Plant Sci. pmid:12417141
Nava VE et al. Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. 2002 Exp. Cell Res. pmid:12441135
Tanski W et al. Sphingosine-1-phosphate induces G(alphai)-coupled, PI3K/ras-dependent smooth muscle cell migration. 2002 J. Surg. Res. pmid:12443721
Osada M et al. Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. 2002 Biochem. Biophys. Res. Commun. pmid:12445827
Grey A et al. The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. 2002 Endocrinology pmid:12446603
Graeler M and Goetzl EJ Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. 2002 FASEB J. pmid:12468451
Malchinkhuu E et al. Assessment of the role of sphingosine 1-phosphate and its receptors in high-density lipoprotein-induced stimulation of astroglial cell function. 2003 Biochem. J. pmid:12470300
Waters C et al. Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. 2003 J. Biol. Chem. pmid:12480944
Lim HS et al. Syntheses of sphingosine-1-phosphate stereoisomers and analogues and their interaction with EDG receptors. 2003 Bioorg. Med. Chem. Lett. pmid:12482430
Shikata Y et al. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. 2003 J. Appl. Physiol. pmid:12482769
Auge N et al. Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways. 2002 Arterioscler. Thromb. Vasc. Biol. pmid:12482824
Katsuma S et al. Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. 2002 Genes Cells pmid:12485162
Yun JK and Kester M Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. 2002 Arch. Biochem. Biophys. pmid:12485605
Jeng YJ et al. Regulation of oxytocin receptor expression in cultured human myometrial cells by fetal bovine serum and lysophospholipids. 2003 Endocrinology pmid:12488330
Hirafuji M et al. [Modulation of sphingosine 1-phosphate, a new lipid mediator, on nitric oxide production by vascular smooth muscle cells]. 2002 Nippon Yakurigaku Zasshi pmid:12491784
Muraki K et al. [Effects of sphingosine-1-phosphate, a lipid mediator, in cardiovascular tissues]. 2002 Nippon Yakurigaku Zasshi pmid:12491795
Benaud CM et al. Deregulated activation of matriptase in breast cancer cells. 2002 Clin. Exp. Metastasis pmid:12498394
Katsuma S et al. Transcriptional profiling of gene expression patterns during sphingosine 1-phosphate-induced mesangial cell proliferation. 2003 Biochem. Biophys. Res. Commun. pmid:12504122
Yamagata K et al. Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. 2003 Glia pmid:12509810
Cho H et al. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. 2003 FASEB J. pmid:12514120
Meacci E et al. Activation of phospholipase D by bradykinin and sphingosine 1-phosphate in A549 human lung adenocarcinoma cells via different GTP-binding proteins and protein kinase C delta signaling pathways. 2003 Biochemistry pmid:12525155
Florio T et al. Basic fibroblast growth factor activates endothelial nitric-oxide synthase in CHO-K1 cells via the activation of ceramide synthesis. 2003 Mol. Pharmacol. pmid:12527801
Cuvillier O Sphingosine in apoptosis signaling. 2002 Biochim. Biophys. Acta pmid:12531549
Maceyka M et al. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. 2002 Biochim. Biophys. Acta pmid:12531554
Young KW and Nahorski SR Sphingosine 1-phosphate: a Ca2+ release mediator in the balance. 2002 Nov-Dec Cell Calcium pmid:12543093
Ikeda H et al. Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. 2003 Gastroenterology pmid:12557151
Rábano M et al. Sphingosine-1-phosphate stimulates cortisol secretion. 2003 FEBS Lett. pmid:12560086
Cho H et al. The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. 2003 Biochem. J. pmid:12564955
Ignatov A et al. Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. 2003 J. Neurosci. pmid:12574419
Dolezalova H et al. Biochemical regulation of breast cancer cell expression of S1P2 (Edg-5) and S1P3 (Edg-3) G protein-coupled receptors for sphingosine 1-phosphate. 2003 J. Cell. Biochem. pmid:12577307
Kihara A et al. Sphingosine-1-phosphate lyase is involved in the differentiation of F9 embryonal carcinoma cells to primitive endoderm. 2003 J. Biol. Chem. pmid:12584204
Jin Y et al. Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. 2003 Blood pmid:12586615
Osada M et al. Modulation of sphingosine 1-phosphate/EDG signaling by tumor necrosis factor-alpha in vascular endothelial cells. 2002 Thromb. Res. pmid:12590954
Dziak R et al. Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells. 2003 Prostaglandins Leukot. Essent. Fatty Acids pmid:12591009
Perry DK and Kolesnick RN Ceramide and sphingosine 1-phosphate in anti-cancer therapies. 2003 Cancer Treat. Res. pmid:12613204
Deroanne C et al. EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway. 2003 J. Cell. Sci. pmid:12615978
Renault AD et al. Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. 2002 Gene Expr. Patterns pmid:12617823
Fueller M et al. Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate. 2003 Cell. Signal. pmid:12618211
Niedernberg A et al. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. 2003 Cell. Signal. pmid:12618218
Honig SM et al. FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. 2003 J. Clin. Invest. pmid:12618517
Schaphorst KL et al. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. 2003 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:12626332
Malik ZA et al. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. 2003 J. Immunol. pmid:12626530
Hakogi T et al. Synthesis of fluorescence-labeled sphingosine and sphingosine 1-phosphate; effective tools for sphingosine and sphingosine 1-phosphate behavior. 2003 Bioorg. Med. Chem. Lett. pmid:12639553
Vogler R et al. Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. 2003 J. Invest. Dermatol. pmid:12648236
Bollag WB Paradoxical effects of sphingosine-1-phosphate. 2003 J. Invest. Dermatol. pmid:12648243
Uhlenbrock K et al. Fluid shear stress differentially regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. 2003 Cell. Physiol. Biochem. pmid:12649592
Gómez-Muñoz A et al. Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. 2003 FEBS Lett. pmid:12650926
Kim DS et al. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. 2003 J. Cell. Sci. pmid:12665551
Ohmori T et al. Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. 2003 Cardiovasc. Res. pmid:12667959
Muraki K [Analyses of Ca-related ion channel currents and their involvement in Ca mobilization in smooth muscle and endothelial cells]. 2003 Nippon Yakurigaku Zasshi pmid:12673948
Hla T Signaling and biological actions of sphingosine 1-phosphate. 2003 Pharmacol. Res. pmid:12676514
Buccoliero R and Futerman AH The roles of ceramide and complex sphingolipids in neuronal cell function. 2003 Pharmacol. Res. pmid:12676515
Mendel J et al. Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. 2003 J. Biol. Chem. pmid:12682045
Spiegel S and Milstien S Sphingosine-1-phosphate: an enigmatic signalling lipid. 2003 Nat. Rev. Mol. Cell Biol. pmid:12728273
Takeya H et al. Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. 2003 Blood pmid:12730100
zu Heringdorf DM et al. Inhibition of Ca(2+) signalling by the sphingosine 1-phosphate receptor S1P(1). 2003 Cell. Signal. pmid:12742228
Dantas AP et al. Sphingosine 1-phosphate and control of vascular tone. 2003 Am. J. Physiol. Heart Circ. Physiol. pmid:12742827
Itagaki K and Hauser CJ Sphingosine 1-phosphate, a diffusible calcium influx factor mediating store-operated calcium entry. 2003 J. Biol. Chem. pmid:12746430
Brailoiu E et al. Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca(2+) stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP). 2003 Biochem. J. pmid:12749764
Frohnert PW et al. Lysophosphatidic acid promotes the proliferation of adult Schwann cells isolated from axotomized sciatic nerve. 2003 J. Neuropathol. Exp. Neurol. pmid:12769191
Kimura T et al. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. 2003 Arterioscler. Thromb. Vasc. Biol. pmid:12775579
Duan HF et al. [Progress in the study of physiological function of sphingosine 1-phosphate]. 2003 Sheng Li Ke Xue Jin Zhan pmid:12778803
Salomone S et al. S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. 2003 Eur. J. Pharmacol. pmid:12782194
Graeler MH et al. Protein kinase C epsilon dependence of the recovery from down-regulation of S1P1 G protein-coupled receptors of T lymphocytes. 2003 J. Biol. Chem. pmid:12782628
Mao C et al. Cloning and characterization of a mouse endoplasmic reticulum alkaline ceramidase: an enzyme that preferentially regulates metabolism of very long chain ceramides. 2003 J. Biol. Chem. pmid:12783875
Chihab R et al. Sphingosine 1-phosphate antagonizes human neutrophil apoptosis via p38 mitogen-activated protein kinase. 2003 Cell. Mol. Life Sci. pmid:12785724
Coursol S et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. 2003 Nature pmid:12789341
Watterson K et al. Pleiotropic actions of sphingosine-1-phosphate. 2003 Prog. Lipid Res. pmid:12790117
Bolz SS et al. Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway. 2003 Circulation pmid:12796138
Kim JI et al. Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells. 2003 J. Biol. Chem. pmid:12796504
Thors B et al. Inhibition of Akt phosphorylation by thrombin, histamine and lysophosphatidylcholine in endothelial cells. Differential role of protein kinase C. 2003 Atherosclerosis pmid:12801607
Yamaguchi H et al. Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. 2003 Biochem. J. pmid:12803545
Tilly JL Emerging technologies to control oocyte apoptosis are finally treading on fertile ground. 2001 ScientificWorldJournal pmid:12805661
Arikawa K et al. Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. 2003 J. Biol. Chem. pmid:12810709
Johnson KR et al. Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. 2003 J. Biol. Chem. pmid:12815058
Miura S et al. Ras/Raf1-dependent signal in sphingosine-1-phosphate-induced tube formation in human coronary artery endothelial cells. 2003 Biochem. Biophys. Res. Commun. pmid:12821130
Meacci E et al. Sphingosine 1-phosphate signal transduction in muscle cells. 2003 Ital. J. Biochem. pmid:12833634
Villullas IR et al. Characterisation of a sphingosine 1-phosphate-activated Ca2+ signalling pathway in human neuroblastoma cells. 2003 J. Neurosci. Res. pmid:12836164
Annabi B et al. Matrix metalloproteinase regulation of sphingosine-1-phosphate-induced angiogenic properties of bone marrow stromal cells. 2003 Exp. Hematol. pmid:12842709
Deutschman DH et al. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. 2003 Am. Heart J. pmid:12851609
Burnett C and Howard K Fly and mammalian lipid phosphate phosphatase isoforms differ in activity both in vitro and in vivo. 2003 EMBO Rep. pmid:12856002
Kim DS et al. Sphingosine-1-phosphate promotes mouse melanocyte survival via ERK and Akt activation. 2003 Cell. Signal. pmid:12873705
Kohno T et al. Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells. 2003 Genes Cells pmid:12875654
Worrall D et al. Sphingolipids, new players in plant signaling. 2003 Trends Plant Sci. pmid:12878015
Laychock SG et al. Endothelial differentiation gene receptors in pancreatic islets and INS-1 cells. 2003 Diabetes pmid:12882914
Sauer B et al. Antiapoptotic action of 1alpha,25-dihydroxyvitamin D3 in primary human melanocytes. 2003 Melanoma Res. pmid:12883359
Pettus BJ et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. 2003 FASEB J. pmid:12890694
Gratzinger D et al. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho. 2003 FASEB J. pmid:12890700
Muraki K and Imaizumi Y A novel action of palmitoyl-L-carnitine in human vascular endothelial cells. 2003 J. Pharmacol. Sci. pmid:12890891
Bolz SS and Pohl U Highly effective non-viral gene transfer into vascular smooth muscle cells of cultured resistance arteries demonstrated by genetic inhibition of sphingosine-1-phosphate-induced vasoconstriction. 2003 Jul-Aug J. Vasc. Res. pmid:12913332
Rosen H and Liao J Sphingosine 1-phosphate pathway therapeutics: a lipid ligand-receptor paradigm. 2003 Curr Opin Chem Biol pmid:12941420
Fegley AJ et al. Sphingosine-1-phosphate stimulates smooth muscle cell migration through galpha(i)- and pi3-kinase-dependent p38(MAPK) activation. 2003 J. Surg. Res. pmid:12943808
Lu X et al. Total synthesis of two photoactivatable analogues of the growth-factor-like mediator sphingosine 1-phosphate: differential interaction with protein targets. 2003 J. Org. Chem. pmid:12946147
Van Brocklyn JR et al. Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. 2003 Cancer Lett. pmid:12963123
Olivera A et al. Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. 2003 J. Biol. Chem. pmid:12963721
Djanani A et al. Agonist function of the neurokinin receptor antagonist, [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, in monocytes. 2003 Regul. Pept. pmid:12972327
Deretic D et al. Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of rhodopsin transport carriers in retinal photoreceptors. 2004 Mol. Biol. Cell pmid:13679519