Sphingosine 1-phosphate

Sphingosine 1-phosphate is a lipid of Sphingolipids (SP) class. Sphingosine 1-phosphate is associated with abnormalities such as Infection, Painful Bladder Syndrome, Atherosclerosis, Hyperglycemia and Rheumatoid Arthritis. The involved functions are known as Phosphorylation, Regulation, enzyme activity, Energy Absorption and Vascular Permeability. Sphingosine 1-phosphate often locates in Endothelium, Tissue membrane, Vascular System, Protoplasm and Microfilaments. The associated genes with Sphingosine 1-phosphate are MBTPS1 gene, FBXL15 gene, TEK gene, NTRK1 gene and Gene Family. The related lipids are Promega, Lipopolysaccharides, lysophosphatidic acid, Lysophosphatidylcholines and Lysophospholipids. The related experimental models are Knock-out, Mouse Model, Transgenic Model, Disease model and Experimental Autoimmune Encephalomyelitis.

Cross Reference

Introduction

To understand associated biological information of Sphingosine 1-phosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphingosine 1-phosphate?

Sphingosine 1-phosphate is suspected in Lymphopenia, Ischemia, Infection, Atherosclerosis, Multiple Sclerosis, Asthma and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphingosine 1-phosphate

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Tuberculosis D014376 20 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Per page 10 20 50 100 | Total 101

PubChem Associated disorders and diseases

What pathways are associated with Sphingosine 1-phosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Sphingosine 1-phosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphingosine 1-phosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphingosine 1-phosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphingosine 1-phosphate?

Knock-out

Knock-out are used in the study 'Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NFkappaB-inducing kinase in stromal cells.' (Kunisawa J et al., 2008), Knock-out are used in the study 'Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells.' (Markiewicz M et al., 2011), Knock-out are used in the study 'Chasing sphingosine-1-phosphate, a lipid mediator for cardiomyocyte survival.' (Yang Q, 2007), Knock-out are used in the study 'Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function.' (Idzko M et al., 2006) and Knock-out are used in the study 'Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.' (Gratzinger D et al., 2003).

Mouse Model

Mouse Model are used in the study 'Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin.' (Arce FT et al., 2008), Mouse Model are used in the study 'Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.' (Tengood JE et al., 2010), Mouse Model are used in the study 'S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells.' (Chang CL et al., 2009), Mouse Model are used in the study 'Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages.' (Hughes JE et al., 2008) and Mouse Model are used in the study 'The alliance of sphingosine-1-phosphate and its receptors in immunity.' (Rivera J et al., 2008).

Transgenic Model

Transgenic Model are used in the study 'Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.' (Augé N et al., 2004), Transgenic Model are used in the study 'Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration.' (Sabbadini RA, 2011) and Transgenic Model are used in the study 'Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy.' (Gault CR and Obeid LM, 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphingosine 1-phosphate

Download all related citations
Per page 10 20 50 100 | Total 2896
Authors Title Published Journal PubMed Link
Ignatov A et al. Role of the G-protein-coupled receptor GPR12 as high-affinity receptor for sphingosylphosphorylcholine and its expression and function in brain development. 2003 J. Neurosci. pmid:12574419
Ikeda H et al. Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. 2003 Gastroenterology pmid:12557151
Rábano M et al. Sphingosine-1-phosphate stimulates cortisol secretion. 2003 FEBS Lett. pmid:12560086
Florio T et al. Basic fibroblast growth factor activates endothelial nitric-oxide synthase in CHO-K1 cells via the activation of ceramide synthesis. 2003 Mol. Pharmacol. pmid:12527801
Cho H et al. The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. 2003 Biochem. J. pmid:12564955
Jin Y et al. Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. 2003 Blood pmid:12586615
Dziak R et al. Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells. 2003 Prostaglandins Leukot. Essent. Fatty Acids pmid:12591009
Perry DK and Kolesnick RN Ceramide and sphingosine 1-phosphate in anti-cancer therapies. 2003 Cancer Treat. Res. pmid:12613204
Deroanne C et al. EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway. 2003 J. Cell. Sci. pmid:12615978
Fueller M et al. Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate. 2003 Cell. Signal. pmid:12618211
Niedernberg A et al. Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. 2003 Cell. Signal. pmid:12618218
Dolezalova H et al. Biochemical regulation of breast cancer cell expression of S1P2 (Edg-5) and S1P3 (Edg-3) G protein-coupled receptors for sphingosine 1-phosphate. 2003 J. Cell. Biochem. pmid:12577307
Suomalainen L et al. Sphingosine-1-phosphate in inhibition of male germ cell apoptosis in the human testis. 2003 J. Clin. Endocrinol. Metab. pmid:14602806
Einicker-Lamas M et al. Sphingosine-1-phosphate formation activates phosphatidylinositol-4 kinase in basolateral membranes from kidney cells: crosstalk in cell signaling through sphingolipids and phospholipids. 2003 J. Biochem. pmid:14607979
Castillo SS and Teegarden D Sphingosine-1-phosphate inhibition of apoptosis requires mitogen-activated protein kinase phosphatase-1 in mouse fibroblast C3H10T 1/2 cells. 2003 J. Nutr. pmid:14608042
Meacci E et al. Activation of phospholipase D by bradykinin and sphingosine 1-phosphate in A549 human lung adenocarcinoma cells via different GTP-binding proteins and protein kinase C delta signaling pathways. 2003 Biochemistry pmid:12525155
Katsuma S et al. Transcriptional profiling of gene expression patterns during sphingosine 1-phosphate-induced mesangial cell proliferation. 2003 Biochem. Biophys. Res. Commun. pmid:12504122
Kim DS et al. Sphingosine-1-phosphate promotes mouse melanocyte survival via ERK and Akt activation. 2003 Cell. Signal. pmid:12873705
Kohno T et al. Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells. 2003 Genes Cells pmid:12875654
Worrall D et al. Sphingolipids, new players in plant signaling. 2003 Trends Plant Sci. pmid:12878015
Deutschman DH et al. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. 2003 Am. Heart J. pmid:12851609
Burnett C and Howard K Fly and mammalian lipid phosphate phosphatase isoforms differ in activity both in vitro and in vivo. 2003 EMBO Rep. pmid:12856002
Laychock SG et al. Endothelial differentiation gene receptors in pancreatic islets and INS-1 cells. 2003 Diabetes pmid:12882914
Sauer B et al. Antiapoptotic action of 1alpha,25-dihydroxyvitamin D3 in primary human melanocytes. 2003 Melanoma Res. pmid:12883359
Pettus BJ et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. 2003 FASEB J. pmid:12890694
Gratzinger D et al. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho. 2003 FASEB J. pmid:12890700
Muraki K and Imaizumi Y A novel action of palmitoyl-L-carnitine in human vascular endothelial cells. 2003 J. Pharmacol. Sci. pmid:12890891
Kihara A et al. Sphingosine-1-phosphate lyase is involved in the differentiation of F9 embryonal carcinoma cells to primitive endoderm. 2003 J. Biol. Chem. pmid:12584204
Wang J et al. [Sphingolipid and apoptosis]. 2003 Sheng Li Ke Xue Jin Zhan pmid:14628466
Esch SW et al. Sphingolipid profile in the CNS of the twitcher (globoid cell leukodystrophy) mouse: a lipidomics approach. 2003 Cell. Mol. Biol. (Noisy-le-grand) pmid:14528915
Brailoiu E et al. Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca(2+) stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP). 2003 Biochem. J. pmid:12749764
Hla T Signaling and biological actions of sphingosine 1-phosphate. 2003 Pharmacol. Res. pmid:12676514
Buccoliero R and Futerman AH The roles of ceramide and complex sphingolipids in neuronal cell function. 2003 Pharmacol. Res. pmid:12676515
Bernatchez PN et al. Sphingosine 1-phosphate effect on endothelial cell PAF synthesis: role in cellular migration. 2003 J. Cell. Biochem. pmid:14587028
Meacci E et al. Down-regulation of EDG5/S1P2 during myogenic differentiation results in the specific uncoupling of sphingosine 1-phosphate signalling to phospholipase D. 2003 Biochim. Biophys. Acta pmid:14499732
Clair T et al. Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. 2003 Cancer Res. pmid:14500380
Dorsam G et al. Transduction of multiple effects of sphingosine 1-phosphate (S1P) on T cell functions by the S1P1 G protein-coupled receptor. 2003 J. Immunol. pmid:14500646
Facchinetti MM et al. Differential branching of the sphingolipid metabolic pathways with the stage of development. Involvement of sphingosine kinase. 2003 Biol. Neonate pmid:14504448
Clemens JJ et al. Synthesis of para-alkyl aryl amide analogues of sphingosine-1-phosphate: discovery of potent S1P receptor agonists. 2003 Bioorg. Med. Chem. Lett. pmid:14505636
Shikata Y et al. Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. 2003 FASEB J. pmid:14656986
Coursol S et al. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. 2003 Nature pmid:12789341
Watterson K et al. Pleiotropic actions of sphingosine-1-phosphate. 2003 Prog. Lipid Res. pmid:12790117
Bolz SS et al. Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway. 2003 Circulation pmid:12796138
Kim JI et al. Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells. 2003 J. Biol. Chem. pmid:12796504
Thors B et al. Inhibition of Akt phosphorylation by thrombin, histamine and lysophosphatidylcholine in endothelial cells. Differential role of protein kinase C. 2003 Atherosclerosis pmid:12801607
Yamaguchi H et al. Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. 2003 Biochem. J. pmid:12803545
Miura S et al. Ras/Raf1-dependent signal in sphingosine-1-phosphate-induced tube formation in human coronary artery endothelial cells. 2003 Biochem. Biophys. Res. Commun. pmid:12821130
Vogler R et al. Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. 2003 J. Invest. Dermatol. pmid:12648236
Bollag WB Paradoxical effects of sphingosine-1-phosphate. 2003 J. Invest. Dermatol. pmid:12648243
Uhlenbrock K et al. Fluid shear stress differentially regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. 2003 Cell. Physiol. Biochem. pmid:12649592
Gómez-Muñoz A et al. Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. 2003 FEBS Lett. pmid:12650926
Kimura T et al. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. 2003 Arterioscler. Thromb. Vasc. Biol. pmid:12775579
Duan HF et al. [Progress in the study of physiological function of sphingosine 1-phosphate]. 2003 Sheng Li Ke Xue Jin Zhan pmid:12778803
Bolz SS and Pohl U Highly effective non-viral gene transfer into vascular smooth muscle cells of cultured resistance arteries demonstrated by genetic inhibition of sphingosine-1-phosphate-induced vasoconstriction. 2003 Jul-Aug J. Vasc. Res. pmid:12913332
Dudek SM et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. 2004 J. Biol. Chem. pmid:15056655
Saba JD and Hla T Point-counterpoint of sphingosine 1-phosphate metabolism. 2004 Circ. Res. pmid:15059942
Miura Y et al. Independence of tumor necrosis factor-alpha-induced adhesion molecule expression from sphingosine 1-phosphate signaling in vascular endothelial cells. 2004 J. Thromb. Haemost. pmid:15140149
Garg SK et al. Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. 2004 J. Infect. Dis. pmid:15143482
Hale JJ et al. Potent S1P receptor agonists replicate the pharmacologic actions of the novel immune modulator FTY720. 2004 Bioorg. Med. Chem. Lett. pmid:15149705
Oshima Y et al. Intraocular gutless adenoviral-vectored VEGF stimulates anterior segment but not retinal neovascularization. 2004 J. Cell. Physiol. pmid:15095287
Meacci E et al. Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. 2004 Biochem. J. pmid:15109308
Lim HS et al. Syntheses of sphingosine-1-phosphate analogues and their interaction with EDG/S1P receptors. 2004 Bioorg. Med. Chem. Lett. pmid:15109640
Cui J et al. Role of ceramide in ischemic preconditioning. 2004 J. Am. Coll. Surg. pmid:15110811
Jolly PS et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. 2004 J. Exp. Med. pmid:15067032
Panetti TS et al. Extracellular matrix molecules regulate endothelial cell migration stimulated by lysophosphatidic acid. 2004 J. Thromb. Haemost. pmid:15333043
Kang YC et al. Serum bioactive lysophospholipids prevent TRAIL-induced apoptosis via PI3K/Akt-dependent cFLIP expression and Bad phosphorylation. 2004 Cell Death Differ. pmid:15297884
Holdsworth G et al. A single amino acid determines preference between phospholipids and reveals length restriction for activation of the S1P4 receptor. 2004 BMC Biochem. pmid:15298705
Anliker B and Chun J Cell surface receptors in lysophospholipid signaling. 2004 Semin. Cell Dev. Biol. pmid:15271291
Pyne S et al. Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases. 2004 Semin. Cell Dev. Biol. pmid:15271294
Tokumura A Metabolic pathways and physiological and pathological significances of lysolipid phosphate mediators. 2004 J. Cell. Biochem. pmid:15258912
Muehlich S et al. Induction of connective tissue growth factor (CTGF) in human endothelial cells by lysophosphatidic acid, sphingosine-1-phosphate, and platelets. 2004 Atherosclerosis pmid:15262182
Lee C et al. Attenuation of shock-induced acute lung injury by sphingosine kinase inhibition. 2004 J Trauma pmid:15580017
Yatomi Y et al. Sphingosine 1-phosphate breakdown in platelets. 2004 J. Biochem. pmid:15625319
Galaria II et al. Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration. 2004 J. Surg. Res. pmid:15555614
Shida D et al. Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. 2004 FEBS Lett. pmid:15556605
Bhattacharya J Lung injury: sphingosine-1-phosphate to the rescue. 2004 Am. J. Respir. Crit. Care Med. pmid:15504814
Hedemann J et al. Comparison of noradrenaline and lysosphingolipid-induced vasoconstriction in mouse and rat small mesenteric arteries. 2004 Auton Autacoid Pharmacol pmid:15541015
Kumar A et al. Sphingosine-1-phosphate plays a role in the suppression of lateral pseudopod formation during Dictyostelium discoideum cell migration and chemotaxis. 2004 Cell Motil. Cytoskeleton pmid:15476260
Sun C and Bittman R An efficient preparation of isosteric phosphonate analogues of sphingolipids by opening of oxirane and cyclic sulfamidate intermediates with alpha-lithiated alkylphosphonic esters. 2004 J. Org. Chem. pmid:15497998
Wang FX et al. mitochondrial ceramidase overexpression up-regulates Bcl-2 protein level in K562 cells, probably through its metabolite sphingosine-1-phosphate. 2004 Zhongguo Shi Yan Xue Ye Xue Za Zhi pmid:15498114
Nakamura H et al. Effects of synthetic sphingosine-1-phosphate analogs on arachidonic acid metabolism and cell death. 2004 Biochem. Pharmacol. pmid:15498509
Billich A and Ettmayer P Fluorescence-based assay of sphingosine kinases. 2004 Anal. Biochem. pmid:14769343
Liu S et al. Glycogen synthase kinase 3beta is a negative regulator of growth factor-induced activation of the c-Jun N-terminal kinase. 2004 J. Biol. Chem. pmid:15466414
Birukov KG et al. Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. 2004 Circ. Res. pmid:15472119
Amano S et al. Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids. 2004 Br. J. Dermatol. pmid:15541073
Xin C et al. Heterologous desensitization of the sphingosine-1-phosphate receptors by purinoceptor activation in renal mesangial cells. 2004 Br. J. Pharmacol. pmid:15466446
Otala M et al. Protection from radiation-induced male germ cell loss by sphingosine-1-phosphate. 2004 Biol. Reprod. pmid:14613902
Kelley GG et al. Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. 2004 Biochem. J. pmid:14567755
Sutphen R et al. Lysophospholipids are potential biomarkers of ovarian cancer. 2004 Cancer Epidemiol. Biomarkers Prev. pmid:15247129
Sauer B et al. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. 2004 J. Biol. Chem. pmid:15247277
Roviezzo F et al. Human eosinophil chemotaxis and selective in vivo recruitment by sphingosine 1-phosphate. 2004 Proc. Natl. Acad. Sci. U.S.A. pmid:15254297
Hla T Physiological and pathological actions of sphingosine 1-phosphate. 2004 Semin. Cell Dev. Biol. pmid:15271296
Payne SG et al. Modulation of adaptive immune responses by sphingosine-1-phosphate. 2004 Semin. Cell Dev. Biol. pmid:15271297
Oskouian B and Saba JD Death and taxis: what non-mammalian models tell us about sphingosine-1-phosphate. 2004 Semin. Cell Dev. Biol. pmid:15271298
Matsushita K et al. Sphingosine 1-phosphate activates Weibel-Palade body exocytosis. 2004 Proc. Natl. Acad. Sci. U.S.A. pmid:15273282
Augé N et al. Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. 2004 Circulation pmid:15277330
Chavakis T et al. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. 2004 FASEB J. pmid:15208269
Xu CB et al. Sphingosine signaling and atherogenesis. 2004 Acta Pharmacol. Sin. pmid:15210056
Yokoo E et al. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. 2004 J. Biochem. pmid:15213242
Deretic D et al. Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of rhodopsin transport carriers in retinal photoreceptors. 2004 Mol. Biol. Cell pmid:13679519