sphingosylphosphorylcholine

sphingosylphosphorylcholine is a lipid of Sphingolipids (SP) class. Sphingosylphosphorylcholine is associated with abnormalities such as Cerebral Vasospasm, Subarachnoid Hemorrhage, Atherosclerosis, Hypertensive disease and Niemann-Pick Diseases. The involved functions are known as MAP kinase kinase activity, JUN kinase activity, Phosphorylation, biphenyl synthase activity and Cell Death. Sphingosylphosphorylcholine often locates in Adipose tissue, Protoplasm, Body tissue, Membrane and Extracellular. The associated genes with sphingosylphosphorylcholine are UCN3 gene, MAPK9 gene, JUN gene, NAA50 gene and P4HTM gene. The related lipids are Lysophospholipids, lysophosphatidic acid, Lysophosphatidylcholines, Sphingolipids and Saponin. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of sphingosylphosphorylcholine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with sphingosylphosphorylcholine?

sphingosylphosphorylcholine is suspected in Atherosclerosis, Niemann-Pick Diseases, Hypercholesterolemia, Dermatitis, Atopic, Chronic eczema, Cerebral Vasospasm and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with sphingosylphosphorylcholine

MeSH term MeSH ID Detail
Lupus Erythematosus, Systemic D008180 43 associated lipids
Insulinoma D007340 28 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Seizures D012640 87 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Endotoxemia D019446 27 associated lipids
Niemann-Pick Disease, Type A D052536 1 associated lipids
Niemann-Pick Disease, Type B D052537 1 associated lipids
Total 8

PubChem Associated disorders and diseases

What pathways are associated with sphingosylphosphorylcholine

Lipid pathways are not clear in current pathway databases. We organized associated pathways with sphingosylphosphorylcholine through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with sphingosylphosphorylcholine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with sphingosylphosphorylcholine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with sphingosylphosphorylcholine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with sphingosylphosphorylcholine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with sphingosylphosphorylcholine?

Mouse Model

Mouse Model are used in the study 'Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes.' (Sekiguchi K et al., 1999).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with sphingosylphosphorylcholine

Download all related citations
Per page 10 20 50 100 | Total 248
Authors Title Published Journal PubMed Link
Okamoto H et al. EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. 1999 Biochem. Biophys. Res. Commun. pmid:10381367
Wiktorek-Wójcik M et al. Serine base exchange enzyme activity is modulated by sphingosine and other amphiphilic compounds: possible role of positive charge in increasing the synthesis of phosphatidylserine. 1997 Biochem. Biophys. Res. Commun. pmid:9405236
Boguslawski G et al. Sphingosylphosphorylcholine induces endothelial cell migration and morphogenesis. 2000 Biochem. Biophys. Res. Commun. pmid:10833459
Desai NN and Spiegel S Sphingosylphosphorylcholine is a remarkably potent mitogen for a variety of cell lines. 1991 Biochem. Biophys. Res. Commun. pmid:1958205
Liu R et al. Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellualr stores. 1995 Biochem. Biophys. Res. Commun. pmid:7677781
Yue H et al. Inhibition of autophagy promoted sphingosylphosphorylcholine induced cell death in non-small cell lung cancer cells. 2014 Biochem. Biophys. Res. Commun. pmid:25285628
Strasberg PM and Callahan JW Lysosphingolipids and mitochondrial function. II. Deleterious effects of sphingosylphosphorylcholine. 1988 Biochem. Cell Biol. pmid:2977568
Orlati S et al. Intracellular calcium mobilization and phospholipid degradation in sphingosylphosphorylcholine-stimulated human airway epithelial cells. 1998 Biochem. J. pmid:9729473
Kovacs E and Liliom K Sphingosylphosphorylcholine as a novel calmodulin inhibitor. 2008 Biochem. J. pmid:17979830
Törnquist K and Ekokoski E Effect of sphingosine derivatives on calcium fluxes in thyroid FRTL-5 cells. 1994 Biochem. J. pmid:8166643