2-methyl-1-propanol

2-methyl-1-propanol is a lipid of Fatty Acyls (FA) class. 2-methyl-1-propanol is associated with abnormalities such as FRIEDREICH ATAXIA 1, Amelia, Tuberculosis, purging and Tuberculosis, Pulmonary. The involved functions are known as Regulation, Oxidation-Reduction, Fermentation, Biochemical Pathway and Glycolysis. 2-methyl-1-propanol often locates in Protoplasm, Chromosomes, Human, Pair 7, BL21, Chromosomes and Cell metabolite. The associated genes with 2-methyl-1-propanol are ADH1B gene, LDHA gene, Operon, AAAS gene and SLC7A3 gene. The related lipids are Butanols, Fatty Alcohols, 1-Butanol, Fatty Acids and cyclopropane fatty acids. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-methyl-1-propanol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-methyl-1-propanol?

2-methyl-1-propanol is suspected in Tuberculosis, PARKINSON DISEASE, LATE-ONSET, Dehydration, Erythromelalgia, FRIEDREICH ATAXIA 1, Amelia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-methyl-1-propanol

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Body Weight D001835 333 associated lipids
Angina Pectoris D000787 27 associated lipids
Total 4

PubChem Associated disorders and diseases

What pathways are associated with 2-methyl-1-propanol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-methyl-1-propanol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-methyl-1-propanol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-methyl-1-propanol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-methyl-1-propanol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-methyl-1-propanol?

Knock-out

Knock-out are used in the study 'Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.' (Trinh CT et al., 2011) and Knock-out are used in the study 'Metabolic engineering of microorganisms for the production of higher alcohols.' (Choi YJ et al., 2014).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-methyl-1-propanol

Download all related citations
Per page 10 20 50 100 | Total 500
Authors Title Published Journal PubMed Link
Minty JJ et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23959872
Egorov IA et al. [Formation of alcohols during sucrose heating with amino acids]. 1975 Mar-Apr Prikl. Biokhim. Mikrobiol. pmid:1208379
Fausther-Bovendo H et al. HIV gp41 engages gC1qR on CD4+ T cells to induce the expression of an NK ligand through the PIP3/H2O2 pathway. 2010 PLoS Pathog. pmid:20617170
Colón M et al. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. 2011 PLoS ONE pmid:21267457
Lee DH et al. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. 2011 PLoS ONE pmid:22028828
Chen T et al. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. 2011 PLoS ONE pmid:21267412
Van Dyck S et al. Localization of secondary metabolites in marine invertebrates: contribution of MALDI MSI for the study of saponins in Cuvierian tubules of H. forskali. 2010 PLoS ONE pmid:21085713
Choi H et al. Common household chemicals and the allergy risks in pre-school age children. 2010 PLoS ONE pmid:20976153
Dodatko T et al. Bacillus cereus spores release alanine that synergizes with inosine to promote germination. 2009 PLoS ONE pmid:19636427
Qi H et al. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. 2014 PLoS ONE pmid:24705866