lanosterol

lanosterol is a lipid of Sterol Lipids (ST) class. Lanosterol is associated with abnormalities such as Infection, Atherosclerosis, Myocardial Infarction, Chagas Disease and Fatty Liver. The involved functions are known as Signal, Cytokinesis, physiological aspects, Stereochemistry and ergosterol biosynthetic process. Lanosterol often locates in Body tissue, Membrane, Plasma membrane, Tissue membrane and Cytoskeletal Filaments. The associated genes with lanosterol are Retinoic Acid Response Element, P4HTM gene, CYP51A1 gene, HM13 gene and SC4MOL gene. The related lipids are pneumocysterol, Sterols, lanosteryl acetate, ebericol and cycloartenol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of lanosterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with lanosterol?

lanosterol is suspected in Atherosclerosis, Chagas Disease, vaginalis, hypercholesterolemia, Obesity, Infection and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with lanosterol

MeSH term MeSH ID Detail
Leukemia, Hairy Cell D007943 5 associated lipids
Abetalipoproteinemia D000012 7 associated lipids
Xanthomatosis D014973 17 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Total 4

PubChem Associated disorders and diseases

What pathways are associated with lanosterol

Lipid pathways are not clear in current pathway databases. We organized associated pathways with lanosterol through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with lanosterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with lanosterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with lanosterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with lanosterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with lanosterol?

Knock-out

Knock-out are used in the study 'Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis.' (Ohyama K et al., 2009), Knock-out are used in the study 'Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B.' (Warrilow AG et al., 2010) and Knock-out are used in the study 'Potential biological functions of cytochrome P450 reductase-dependent enzymes in small intestine: novel link to expression of major histocompatibility complex class II genes.' (D'Agostino J et al., 2012).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with lanosterol

Download all related citations
Per page 10 20 50 100 | Total 1125
Authors Title Published Journal PubMed Link
Su CY et al. Differential effects of ganodermic acid S on the thromboxane A2-signaling pathways in human platelets. 1999 Biochem. Pharmacol. pmid:10413295
Venteclef N et al. The imidazoline-like drug S23515 affects lipid metabolism in hepatocyte by inhibiting the oxidosqualene: lanosterol cyclase activity. 2005 Biochem. Pharmacol. pmid:15763540
Moody DE et al. Effects of environmentally encountered epoxides on mouse liver epoxide-metabolizing enzymes. 1991 Biochem. Pharmacol. pmid:2043152
Dutra RC et al. Euphol prevents experimental autoimmune encephalomyelitis in mice: evidence for the underlying mechanisms. 2012 Biochem. Pharmacol. pmid:22155310
Trocha PJ et al. Yeast mutants blocked in removing the methyl group of lanosterol at C-14. Separation of sterols by high-pressure liquid chromatography. 1977 Biochemistry pmid:334248
Lepesheva GI et al. CYP51 from Trypanosoma brucei is obtusifoliol-specific. 2004 Biochemistry pmid:15311940
Lepesheva GI et al. Conservation in the CYP51 family. Role of the B' helix/BC loop and helices F and G in enzymatic function. 2003 Biochemistry pmid:12885242
Wu TK and Griffin JH Conversion of a plant oxidosqualene-cycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis. 2002 Biochemistry pmid:12081472
Xu X and London E The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. 2000 Biochemistry pmid:10653627
Berry DJ and Chang TY Further characterization of a Chinese hamster ovary cell mutant defective in lanosterol demethylation. 1982 Biochemistry pmid:7066308
Endress E et al. Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. 2002 Biochemistry pmid:12390036
Trzaskos JM et al. Substrate-based inhibitors of lanosterol 14 alpha-methyl demethylase: II. Time-dependent enzyme inactivation by selected oxylanosterol analogs. 1995 Biochemistry pmid:7626637
Shumyantseva VV et al. Electrochemical reduction of sterol-14alpha-demethylase from Mycobacterium tuberculosis (CYP51b1). 2007 Biochemistry Mosc. pmid:17630911
Kölsch H et al. Alterations of cholesterol precursor levels in Alzheimer's disease. 2010 Biochim. Biophys. Acta pmid:20226877
Horvath SE et al. Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. 2011 Biochim. Biophys. Acta pmid:21875690
Tabacik C et al. Oxidosqualene cyclization in human placenta. An easy step of sterol biosynthesis. 1975 Biochim. Biophys. Acta pmid:1236745
Astruc M et al. Squalene epoxidase and oxidosqualene lanosterol-cyclase activities in cholesterogenic and non-cholesterogenic tissues. 1977 Biochim. Biophys. Acta pmid:857899
Burns CP et al. Mechanism of defective sterol synthesis in human leukocytes. 1982 Biochim. Biophys. Acta pmid:7150625
Tabacik C et al. Regulation of cholesterol biosynthesis at a stage after the 3-hydroxy-3-methylglutaryl-CoA reductase step, in normal and leukemic (L2C) guinea pig lymphocytes. 1987 Biochim. Biophys. Acta pmid:3651496
Gibbons GF and Mitropoulos KA Effect of trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride and carbon monoxide on hepatic cholesterol biosynthesis from 4,4,-dimethyl sterols in vitro. 1975 Biochim. Biophys. Acta pmid:1120146