Taurodeoxycholic acid

Taurodeoxycholic acid is a lipid of Sterol Lipids (ST) class. Taurodeoxycholic acid is associated with abnormalities such as Ischemia and Wiskott-Aldrich Syndrome. The involved functions are known as Cell Proliferation, Transcriptional Activation, Phosphorylation, Anabolism and Biochemical Pathway. Taurodeoxycholic acid often locates in Body tissue, Epithelium, Blood, Mucous Membrane and Hepatic. The associated genes with Taurodeoxycholic acid are NOX5 gene, GPBAR1 gene, NR1H4 gene and SLC33A1 gene. The related lipids are cholanic acid, taurolithocholic acid 3-sulfate, Sterols, 7-dehydrocholesterol and tauromuricholic acid.

Cross Reference

Introduction

To understand associated biological information of Taurodeoxycholic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Taurodeoxycholic acid?

Taurodeoxycholic acid is suspected in Ischemia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Taurodeoxycholic acid

MeSH term MeSH ID Detail
Tay-Sachs Disease D013661 2 associated lipids
Short Bowel Syndrome D012778 3 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Gastroesophageal Reflux D005764 10 associated lipids
Fetal Resorption D005327 15 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Birth Weight D001724 23 associated lipids
Cholestasis D002779 23 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Gastrointestinal Hemorrhage D006471 27 associated lipids
Per page 10 20 | Total 13

PubChem Associated disorders and diseases

What pathways are associated with Taurodeoxycholic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Taurodeoxycholic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Taurodeoxycholic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Taurodeoxycholic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Taurodeoxycholic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Taurodeoxycholic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Taurodeoxycholic acid

Download all related citations
Per page 10 20 50 100 | Total 449
Authors Title Published Journal PubMed Link
Hismiogullari AA et al. Isolation and biochemical analysis of vesicles from taurohyodeoxycholic acid-infused isolated perfused rat livers. 2013 World J. Gastroenterol. pmid:24115821
Cao W et al. Expression of bile acid receptor TGR5 in gastric adenocarcinoma. 2013 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:23238937
Asaro F et al. 23Na and 35/37Cl as NMR probes of growth and shape of sodium taurodeoxycholate micellar aggregates in the presence of NaCl. 2013 J Colloid Interface Sci pmid:23127873
Lin EP et al. On-line sample preconcentration by sweeping and poly(ethylene oxide)-mediated stacking for simultaneous analysis of nine pairs of amino acid enantiomers in capillary electrophoresis. 2013 Talanta pmid:23953474
Yang YY et al. Role of endoplasmic reticular stress in aortic endothelial apoptosis induced by intermittent/persistent hypoxia. 2013 Chin. Med. J. pmid:24286417
Schreiber R et al. Retinyl ester hydrolases and their roles in vitamin A homeostasis. 2012 Biochim. Biophys. Acta pmid:21586336
Studer E et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. 2012 Hepatology pmid:21932398
Perrone EE et al. Bile salts increase epithelial cell proliferation through HuR-induced c-Myc expression. 2012 J. Surg. Res. pmid:22626558
Düfer M et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. 2012 Diabetes pmid:22492528
Karlgren M et al. In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. 2012 Pharm. Res. pmid:21861202