Taurodeoxycholic acid

Taurodeoxycholic acid is a lipid of Sterol Lipids (ST) class. Taurodeoxycholic acid is associated with abnormalities such as Ischemia and Wiskott-Aldrich Syndrome. The involved functions are known as Cell Proliferation, Transcriptional Activation, Phosphorylation, Anabolism and Biochemical Pathway. Taurodeoxycholic acid often locates in Body tissue, Epithelium, Blood, Mucous Membrane and Hepatic. The associated genes with Taurodeoxycholic acid are NOX5 gene, GPBAR1 gene, NR1H4 gene and SLC33A1 gene. The related lipids are cholanic acid, taurolithocholic acid 3-sulfate, Sterols, 7-dehydrocholesterol and tauromuricholic acid.

Cross Reference

Introduction

To understand associated biological information of Taurodeoxycholic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Taurodeoxycholic acid?

Taurodeoxycholic acid is suspected in Ischemia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Taurodeoxycholic acid

MeSH term MeSH ID Detail
Colitis, Ulcerative D003093 24 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Body Weight D001835 333 associated lipids
Cholestasis D002779 23 associated lipids
Birth Weight D001724 23 associated lipids
Shock, Hemorrhagic D012771 4 associated lipids
Gastrointestinal Hemorrhage D006471 27 associated lipids
Tay-Sachs Disease D013661 2 associated lipids
Fetal Resorption D005327 15 associated lipids
Per page 10 20 | Total 13

PubChem Associated disorders and diseases

What pathways are associated with Taurodeoxycholic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Taurodeoxycholic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Taurodeoxycholic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Taurodeoxycholic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Taurodeoxycholic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Taurodeoxycholic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Taurodeoxycholic acid

Download all related citations
Per page 10 20 50 100 | Total 449
Authors Title Published Journal PubMed Link
Debellis L et al. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. 2009 PLoS ONE pmid:19333391
Fimognari C et al. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells. 2009 Ann. N. Y. Acad. Sci. pmid:19723064
Khafagy el-S et al. Effect of cell-penetrating peptides on the nasal absorption of insulin. 2009 J Control Release pmid:18930084
Helgason T et al. Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles. 2009 J. Agric. Food Chem. pmid:19691283
Xu Y et al. Freeze-dried grape powder attenuates mitochondria- and oxidative stress-mediated apoptosis in liver cells. 2009 J. Agric. Food Chem. pmid:19754144
Shant J et al. Akt-dependent NF-kappaB activation is required for bile acids to rescue colon cancer cells from stress-induced apoptosis. 2009 Exp. Cell Res. pmid:19056378
Castro J et al. A small component of the endoplasmic reticulum is required for store-operated Ca2+ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid. 2009 Biochem. J. pmid:19007332
Nagana Gowda GA et al. Bile acids conjugation in human bile is not random: new insights from (1)H-NMR spectroscopy at 800 MHz. 2009 Lipids pmid:19373503
Murata Y et al. Properties of an oral preparation containing a chitosan salt. 2009 Molecules pmid:19223823
Holm R et al. Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and beta-cyclodextrin. 2009 Phys Chem Chem Phys pmid:19562137