11-dehydro-txb2

Introduction

To understand associated biological information of 11-dehydro-txb2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 11-dehydro-txb2?

11-dehydro-txb2 is suspected in Risk factor, cardiovascular, Acute coronary syndrome, thrombocytosis, Chronic ischemic heart disease NOS, Diabetes Mellitus, Diabetes Mellitus, Non-Insulin-Dependent and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 11-dehydro-txb2

MeSH term MeSH ID Detail
Inflammation D007249 119 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Brain Ischemia D002545 89 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Atherosclerosis D050197 85 associated lipids
Hyperlipidemias D006949 73 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Asthma D001249 52 associated lipids
Thrombosis D013927 49 associated lipids
Per page 10 20 | Total 20

PubChem Associated disorders and diseases

What pathways are associated with 11-dehydro-txb2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 11-dehydro-txb2?

There are no associated biomedical information in the current reference collection.

What functions are associated with 11-dehydro-txb2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 11-dehydro-txb2?

There are no associated biomedical information in the current reference collection.

What genes are associated with 11-dehydro-txb2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 11-dehydro-txb2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 11-dehydro-txb2

Download all related citations
Per page 10 20 50 100 | Total 283
Authors Title Published Journal PubMed Link
Spectre G et al. Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macrovascular complications. 2011 Thromb. Haemost. pmid:21800009
Hoh CM et al. Evaluation of effects of low-dose aspirin administration on urinary thromboxane metabolites in healthy dogs. 2011 Am. J. Vet. Res. pmid:21801060
Shen L et al. In vivo oxidation, platelet activation and simultaneous occurrence of natural immunity in atherosclerosis-prone mice. 2011 Isr. Med. Assoc. J. pmid:21845968
Hall JA et al. Dietary fish oil alters the lysophospholipid metabolomic profile and decreases urinary 11-dehydro thromboxane Bâ‚‚ concentration in healthy Beagles. 2011 Vet. Immunol. Immunopathol. pmid:21925741
Thomason J et al. Platelet cyclooxygenase expression in normal dogs. 2011 Sep-Oct J. Vet. Intern. Med. pmid:21985141
Wu P et al. Purification and characterization of an NAD(+)-dependent dehydrogenase that catalyzes the oxidation of thromboxane B2 at C-11 from porcine liver. Development and application of 11-dehydro-thromboxane B2 radioimmunoassay to enzyme assay. 1990 Biochim. Biophys. Acta pmid:2223826
Mullins KB et al. Effects of carprofen, meloxicam and deracoxib on platelet function in dogs. 2012 Vet Anaesth Analg pmid:22248445
Lemkes BA et al. The influence of aspirin dose and glycemic control on platelet inhibition in patients with type 2 diabetes mellitus. 2012 J. Thromb. Haemost. pmid:22252020
Li C et al. Reversal of the anti-platelet effects of aspirin and clopidogrel. 2012 J. Thromb. Haemost. pmid:22268852
Hartanto MD et al. Urinary 11-dehydro-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin-F₁α in healthy post-menopausal and pre-menopausal women receiving aspirin 100 mg. 2012 J. Thromb. Thrombolysis pmid:22311294
Ciabattoni G et al. Radioimmunoassay of 11-dehydrothromboxane B2. 1990 Meth. Enzymol. pmid:2233352
Cesari M et al. Oxidative damage, platelet activation, and inflammation to predict mobility disability and mortality in older persons: results from the health aging and body composition study. 2012 J. Gerontol. A Biol. Sci. Med. Sci. pmid:22389462
Vazzana N et al. Endogenous secretory RAGE in obese women: association with platelet activation and oxidative stress. 2012 J. Clin. Endocrinol. Metab. pmid:22761461
Dragani A et al. Oxidative stress and platelet activation in subjects with moderate hyperhomocysteinaemia due to MTHFR 677 C→T polymorphism. 2012 Thromb. Haemost. pmid:22782530
Sadilkova L et al. The effect of selected pre-analytical phase variables on plasma thromboxane Aâ‚‚ measurements in humans. 2013 Int J Lab Hematol pmid:22908995
Yi X et al. Platelet response to aspirin in Chinese stroke patients is independent of genetic polymorphisms of COX-1 C50T and COX-2 G765C. 2013 J. Atheroscler. Thromb. pmid:22972377
Gautier-Veyret E et al. Intermittent hypoxia-activated cyclooxygenase pathway: role in atherosclerosis. 2013 Eur. Respir. J. pmid:23060635
Olson MT et al. Effect of assay specificity on the association of urine 11-dehydro thromboxane B2 determination with cardiovascular risk. 2012 J. Thromb. Haemost. pmid:23072449
Dudley A et al. Cyclooxygenase expression and platelet function in healthy dogs receiving low-dose aspirin. 2013 Jan-Feb J. Vet. Intern. Med. pmid:23278865
Carroll RC et al. A comparison of VerifyNowR with PlateletMappingR--detected aspirin resistance and correlation with urinary thromboxane. 2013 Anesth. Analg. pmid:23302970
Dharmasaroja PA et al. Aspirin nonresponders in patients with ischaemic stroke. 2013 Blood Coagul. Fibrinolysis pmid:23429255
Davì G et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. 1990 N. Engl. J. Med. pmid:2345567
Vazzana N et al. Enhanced lipid peroxidation and platelet activation as potential contributors to increased cardiovascular risk in the low-HDL phenotype. 2013 J Am Heart Assoc pmid:23557750
Nakamura A et al. Oral administration of a novel long-acting prostacyclin agonist with thromboxane synthase inhibitory activity for pulmonary arterial hypertension. 2013 Circ. J. pmid:23676973
Hayashi Y et al. Immunoaffinity purification of 11-dehydro-thromboxane B2 from human urine and plasma for quantitative analysis by radioimmunoassay. 1990 Anal. Biochem. pmid:2372112
Gremmel T et al. Differential impact of inflammation on six laboratory assays measuring residual arachidonic acid-inducible platelet reactivity during dual antiplatelet therapy. 2013 J. Atheroscler. Thromb. pmid:23739624
DeFilippis AP et al. Thromboxane A(2) generation, in the absence of platelet COX-1 activity, in patients with and without atherothrombotic myocardial infarction. 2013 Circ. J. pmid:23985963
d'Emmanuele di Villa Bianca R et al. Hydrogen sulphide pathway contributes to the enhanced human platelet aggregation in hyperhomocysteinemia. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:24019484
Santilli F et al. Effects of high-amount-high-intensity exercise on in vivo platelet activation: modulation by lipid peroxidation and AGE/RAGE axis. 2013 Thromb. Haemost. pmid:24030807
Kapłon-Cieślicka A et al. Predictors of high platelet reactivity during aspirin treatment in patients with type 2 diabetes. 2013 Kardiol Pol pmid:24065375
pmid:24126290
Gonçalves LH et al. Acetylsalicylic acid therapy: influence of metformin use and other variables on urinary 11-dehydrothromboxane B2 levels. 2014 Clin. Chim. Acta pmid:24316050
DeFilippis AP et al. Fatty acids and TxA(2) generation, in the absence of platelet-COX-1 activity. 2014 Nutr Metab Cardiovasc Dis pmid:24370448
pmid:24763965
Ross S et al. Association of cyclooxygenase-2 genetic variant with cardiovascular disease. 2014 Eur. Heart J. pmid:24796340
pmid:24803308
pmid:24907931
Santilli F et al. Circulating myeloid-related protein-8/14 is related to thromboxane-dependent platelet activation in patients with acute coronary syndrome, with and without ongoing low-dose aspirin treatment. 2014 J Am Heart Assoc pmid:25037196
Lattanzio S et al. Circulating dickkopf-1 in diabetes mellitus: association with platelet activation and effects of improved metabolic control and low-dose aspirin. 2014 J Am Heart Assoc pmid:25037197
Lupinetti MD et al. Thromboxane biosynthesis in allergen-induced bronchospasm. Evidence for platelet activation. 1989 Am. Rev. Respir. Dis. pmid:2508524
Floyd CN et al. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects. 2014 Br J Clin Pharmacol pmid:25099258
pmid:25288566
pmid:25466142
pmid:25589198
pmid:25669623
pmid:25759102
pmid:25808116
Véricel E et al. Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients. 2015 Thromb. Haemost. pmid:25832443
Lorenz RL et al. A critical evaluation of urinary immunoreactive thromboxane: feasibility of its determination as a potential vascular risk indicator. 1989 Biochim. Biophys. Acta pmid:2597697
pmid:26095809