Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Placental Insufficiency D010927 6 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Cleft Lip D002971 8 associated lipids
Myocardial Stunning D017682 10 associated lipids
Hypoglycemia D007003 13 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Ketosis D007662 13 associated lipids
Angina Pectoris D000787 27 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Thomson DM et al. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17925454
Noland RC et al. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17638705
Yee AJ and Turcotte LP Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:12067845
Kraegen EW et al. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16234268
Assifi MM et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15956049
Steinberg GR et al. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. 2003 Am. J. Physiol. Endocrinol. Metab. pmid:12441311
Guo W et al. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17148751
Chien D et al. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. 2000 Am. J. Physiol. Endocrinol. Metab. pmid:10913024
Frøsig C et al. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. 2009 Am. J. Physiol. Endocrinol. Metab. pmid:19190265
Martin J et al. Nutritional stress exacerbates hepatic steatosis induced by deletion of the histidine nucleotide-binding (Hint2) mitochondrial protein. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:26767982