Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Placental Insufficiency D010927 6 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Cleft Lip D002971 8 associated lipids
Myocardial Stunning D017682 10 associated lipids
Ketosis D007662 13 associated lipids
Hypoglycemia D007003 13 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Angina Pectoris D000787 27 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Treber M et al. Identification by mutagenesis of conserved arginine and glutamate residues in the C-terminal domain of rat liver carnitine palmitoyltransferase I that are important for catalytic activity and malonyl-CoA sensitivity. 2003 J. Biol. Chem. pmid:12540837
Wang F et al. Inhibitive effect of zinc ion on fatty acid synthase from chicken liver. 2003 Int. J. Biochem. Cell Biol. pmid:12531252
BÃ¥venholm PN et al. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme A regulation. 2003 J. Clin. Endocrinol. Metab. pmid:12519834
Liou GF et al. Quantitative analysis of loading and extender acyltransferases of modular polyketide synthases. 2003 Biochemistry pmid:12515555
Morillas M et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. 2003 J. Biol. Chem. pmid:12499375
Prentki M et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. 2002 Diabetes pmid:12475783
Rasmussen BB et al. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464674
Jensen MD Fatty acid oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464664
Tomas E et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12456889
Steinberg GR et al. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. 2003 Am. J. Physiol. Endocrinol. Metab. pmid:12441311
Park SH et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. 2002 J. Appl. Physiol. pmid:12433937
Dyck JR and Lopaschuk GD Malonyl CoA control of fatty acid oxidation in the ischemic heart. 2002 J. Mol. Cell. Cardiol. pmid:12392882
Onay-Besikci A et al. Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. 2003 Am. J. Physiol. Heart Circ. Physiol. pmid:12388233
Schwarzer D et al. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12384573
Pan Y et al. The extreme C terminus of rat liver carnitine palmitoyltransferase I is not involved in malonyl-CoA sensitivity but in initial protein folding. 2002 J. Biol. Chem. pmid:12351641
Verhoeyen ME et al. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. 2002 J. Exp. Bot. pmid:12324533
Poirier M et al. Probing the link between citrate and malonyl-CoA in perfused rat hearts. 2002 Am. J. Physiol. Heart Circ. Physiol. pmid:12234788
Witkowski A et al. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. 2002 Biochemistry pmid:12196027
Zheng X et al. Substrate binding induces a cooperative conformational change in the 12S subunit of transcarboxylase: Raman crystallographic evidence. 2002 Biochemistry pmid:12196011
Florova G et al. Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. 2002 Biochemistry pmid:12173933
Suh MC et al. What limits production of unusual monoenoic fatty acids in transgenic plants? 2002 Planta pmid:12172841
Ghanevati M and Jaworski JG Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. 2002 Eur. J. Biochem. pmid:12135493
Shafrir E et al. Regulation of muscle malonyl-CoA levels in the nutritionally insulin-resistant desert gerbil, Psammomys obesus. 2002 May-Jun Diabetes Metab. Res. Rev. pmid:12112940
Hirsch J The search for new ways to treat obesity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12093927
Richards JG et al. Substrate utilization during graded aerobic exercise in rainbow trout. 2002 J. Exp. Biol. pmid:12089210
Ukropec J et al. An increase in peroxisomal fatty acid oxidation is not sufficient to prevent tissue lipid accumulation in hHTg rats. 2002 Ann. N. Y. Acad. Sci. pmid:12079837
Yee AJ and Turcotte LP Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:12067845
Thupari JN et al. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12060712
Atkinson LL et al. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. 2002 J. Biol. Chem. pmid:12058043
Salles J et al. Fatty acid synthase expression during peripheral nervous system myelination. 2002 Brain Res. Mol. Brain Res. pmid:12007831
Jez JM et al. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:11959984
Hügler M et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. 2002 J. Bacteriol. pmid:11948153
Kim JY et al. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11934665
Morillas M et al. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain. 2002 J. Biol. Chem. pmid:11790793
Nicot C et al. Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity. 2002 J. Biol. Chem. pmid:11790778
Ido Y et al. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. 2002 Diabetes pmid:11756336
Reeves CD et al. Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. 2001 Biochemistry pmid:11747421
Richards JG et al. Lipid oxidation fuels recovery from exhaustive exercise in white muscle of rainbow trout. 2002 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:11742827
Campbell FM et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. 2002 J. Biol. Chem. pmid:11734553
Jackson VN et al. Specificity of the interactions between Glu-3, Ser-24, and Gln-30 within the N-terminal segment of rat liver mitochondrial overt carnitine palmitoyltransferase (L-CPT I) in determining the malonyl-CoA sensitivity of the enzyme. 2001 Biochemistry pmid:11724576
Martini WZ et al. Alteration of hepatic fatty acid metabolism after burn injury in pigs. 2001 Nov-Dec JPEN J Parenter Enteral Nutr pmid:11688934
Reszko AE et al. Assay of the concentration and 13C-isotopic enrichment of malonyl-coenzyme A by gas chromatography-mass spectrometry. 2001 Anal. Biochem. pmid:11673897
Moon YA et al. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. 2001 J. Biol. Chem. pmid:11567032
Longnus SL et al. Regulation of myocardial fatty acid oxidation by substrate supply. 2001 Am. J. Physiol. Heart Circ. Physiol. pmid:11557544
Doenst T et al. Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. 2001 Metab. Clin. Exp. pmid:11555843
Morillas M et al. Structural model of the catalytic core of carnitine palmitoyltransferase I and carnitine octanoyltransferase (COT): mutation of CPT I histidine 473 and alanine 381 and COT alanine 238 impairs the catalytic activity. 2001 J. Biol. Chem. pmid:11553629
Surendran S et al. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene. 2001 J. Neurosci. Res. pmid:11550227
Jahnke LL and Diggs K Evidence for the synthesis of the multi-positional isomers of monounsaturated fatty acid in Methylococcus capsusatus by the anaerobic pathway. 1989 FEMS Microbiol. Lett. pmid:11542184
Rangan VS et al. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. 2001 Biochemistry pmid:11535054
Rodríguez E et al. Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2). 2001 Appl. Environ. Microbiol. pmid:11526020