Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Body Weight D001835 333 associated lipids
Cleft Lip D002971 8 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypoglycemia D007003 13 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Odland LM et al. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. 1998 Am. J. Physiol. pmid:9611159
Winder WW et al. Time course of exercise-induced decline in malonyl-CoA in different muscle types. 1990 Am. J. Physiol. pmid:2166437
Rodnick KJ and Sidell BD Cold acclimation increases carnitine palmitoyltransferase I activity in oxidative muscle of striped bass. 1994 Am. J. Physiol. pmid:8141397
Laybutt DR et al. Muscle lipid accumulation and protein kinase C activation in the insulin-resistant chronically glucose-infused rat. 1999 Am. J. Physiol. pmid:10600797
Hutber CA et al. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. 1997 Am. J. Physiol. pmid:9124333
Raney MA et al. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15547141
Lehtihet M et al. Glibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis. 2003 Am. J. Physiol. Endocrinol. Metab. pmid:12684219
Vavrova E et al. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:27507552
Miura S et al. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. 2013 Am. J. Physiol. Endocrinol. Metab. pmid:23695215
Gao S et al. Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. 2013 Am. J. Physiol. Endocrinol. Metab. pmid:23736540