Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Placental Insufficiency D010927 6 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Cleft Lip D002971 8 associated lipids
Myocardial Stunning D017682 10 associated lipids
Hypoglycemia D007003 13 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Ketosis D007662 13 associated lipids
Angina Pectoris D000787 27 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypothyroidism D007037 32 associated lipids
Starvation D013217 47 associated lipids
Fatty Liver D005234 48 associated lipids
Weight Loss D015431 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Gain D015430 101 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Miyahisa I et al. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. 2005 Appl. Microbiol. Biotechnol. pmid:15770480
Trivedi OA et al. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. 2005 Mol. Cell pmid:15749014
Rendina AR and Cheng D Characterization of the inactivation of rat fatty acid synthase by C75: inhibition of partial reactions and protection by substrates. 2005 Biochem. J. pmid:15715522
Funa N et al. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. 2005 J. Biol. Chem. pmid:15701630
Abe I et al. A plant type III polyketide synthase that produces pentaketide chromone. 2005 J. Am. Chem. Soc. pmid:15686354
Herrero L et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. 2005 Diabetes pmid:15677504
Oh W et al. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15677334
Koves TR et al. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. 2005 Am. J. Physiol., Cell Physiol. pmid:15647392
Taylor EB et al. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15644453
Jeong JC et al. Exploiting the reaction flexibility of a type III polyketide synthase through in vitro pathway manipulation. 2005 J. Am. Chem. Soc. pmid:15631450
Bian F et al. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. 2005 J. Biol. Chem. pmid:15611129
Menendez JA et al. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo's hypothesis. 2005 Med. Hypotheses pmid:15607568
Dulloo AG et al. Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. 2004 Int. J. Obes. Relat. Metab. Disord. pmid:15592483
Foster DW The role of the carnitine system in human metabolism. 2004 Ann. N. Y. Acad. Sci. pmid:15590999
Shirai Y et al. Metabolic regulation of leptin production in adipocytes: a role of fatty acid synthesis intermediates. 2004 J. Nutr. Biochem. pmid:15590268
Liu H et al. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. 2005 J. Biol. Chem. pmid:15579906
Yu X et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. 2004 Diabetologia pmid:15578153
Prentki M et al. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. 1992 J. Biol. Chem. pmid:1556096
Raney MA et al. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15547141
Kashfi K and Cook GA Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors. 1992 Biochem. J. pmid:1554374
Nicot C et al. C75 activates malonyl-CoA sensitive and insensitive components of the CPT system. 2004 Biochem. Biophys. Res. Commun. pmid:15541339
Oguro S et al. Probing biosynthesis of plant polyketides with synthetic N-acetylcysteamine thioesters. 2004 Biochem. Biophys. Res. Commun. pmid:15530429
Peluso G et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. 2005 J. Cell. Physiol. pmid:15515015
Zhang YQ et al. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. 2004 Genetics pmid:15514053
Faye A et al. Demonstration of N- and C-terminal domain intramolecular interactions in rat liver carnitine palmitoyltransferase 1 that determine its degree of malonyl-CoA sensitivity. 2005 Biochem. J. pmid:15498023
Cheng L et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. 2004 Nat. Med. pmid:15475963
Relat J et al. Pig muscle carnitine palmitoyltransferase I (CPTI beta), with low Km for carnitine and low sensitivity to malonyl-CoA inhibition, has kinetic characteristics similar to those of the rat liver (CPTI alpha) enzyme. 2004 Biochemistry pmid:15449958
Roepstorff C et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15383373
Yoshida S and Bourre JM Condensation activity for polyunsaturated fatty acids with malonyl-CoA in rat brain microsomes. Characteristics and developmental change. 1992 Biochim. Biophys. Acta pmid:1536871
Juárez P et al. A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone. 1992 Arch. Biochem. Biophys. pmid:1536569
Yang N et al. C75 [4-methylene-2-octyl-5-oxo-tetrahydro-furan-3-carboxylic acid] activates carnitine palmitoyltransferase-1 in isolated mitochondria and intact cells without displacement of bound malonyl CoA. 2005 J. Pharmacol. Exp. Ther. pmid:15356215
Gande R et al. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. 2004 J. Biol. Chem. pmid:15308633
A'Bháird NN and Ramsay RR Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase. 1992 Biochem. J. pmid:1530596
Bederman IR et al. In vitro modeling of fatty acid synthesis under conditions simulating the zonation of lipogenic [13C]acetyl-CoA enrichment in the liver. 2004 J. Biol. Chem. pmid:15284243
Onay-Besikci A et al. gAd-globular head domain of adiponectin increases fatty acid oxidation in newborn rabbit hearts. 2004 J. Biol. Chem. pmid:15269215
Kerner J et al. Phosphorylation of rat liver mitochondrial carnitine palmitoyltransferase-I: effect on the kinetic properties of the enzyme. 2004 J. Biol. Chem. pmid:15247243
Chandler MP et al. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. 2004 Am. J. Physiol. Heart Circ. Physiol. pmid:15191896
Reszko AE et al. Regulation of malonyl-CoA concentration and turnover in the normal heart. 2004 J. Biol. Chem. pmid:15181001
Rodriguez E et al. Engineered biosynthesis of 16-membered macrolides that require methoxymalonyl-ACP precursors in Streptomyces fradiae. 2004 Appl. Microbiol. Biotechnol. pmid:15179529
Cao J et al. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. 2004 J. Biol. Chem. pmid:15152008
Raharjo TJ et al. Cloning and over-expression of a cDNA encoding a polyketide synthase from Cannabis sativa. 2004 Plant Physiol. Biochem. pmid:15120113
Minkler PE et al. Isolation and identification of two isomeric forms of malonyl-coenzyme A in commercial malonyl-coenzyme A. 2004 Anal. Biochem. pmid:15113698
Falk KL et al. Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. 2004 Phytochemistry pmid:15110687
Dyck JR et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. 2004 Circ. Res. pmid:15105298
Weiss DR and Glickman JF Characterization of fatty acid synthase activity using scintillation proximity. 2003 Assay Drug Dev Technol pmid:15090142
Unger RH The hyperleptinemia of obesity-regulator of caloric surpluses. 2004 Cell pmid:15084251
Ruderman N and Prentki M AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. 2004 Nat Rev Drug Discov pmid:15060529
Degrace P et al. Hepatic steatosis is not due to impaired fatty acid oxidation capacities in C57BL/6J mice fed the conjugated trans-10,cis-12-isomer of linoleic acid. 2004 J. Nutr. pmid:15051838
Roduit R et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. 2004 Diabetes pmid:15047616
Abe I et al. The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. 2004 FEBS Lett. pmid:15044020