Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Placental Insufficiency D010927 6 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Cleft Lip D002971 8 associated lipids
Myocardial Stunning D017682 10 associated lipids
Hypoglycemia D007003 13 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Ketosis D007662 13 associated lipids
Angina Pectoris D000787 27 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypothyroidism D007037 32 associated lipids
Starvation D013217 47 associated lipids
Fatty Liver D005234 48 associated lipids
Weight Loss D015431 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Gain D015430 101 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Griffith DA et al. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. 2014 J. Med. Chem. pmid:25423286
Wu J et al. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli. 2014 Appl. Environ. Microbiol. pmid:25239896
Mandrup S et al. In memoriam: M. Daniel Lane, 1930-2014. 2014 Trends Endocrinol. Metab. pmid:25084731
Zordoky BN et al. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation. 2014 Circ. Res. pmid:25001074
Xu P et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25049420
Xu P et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. 2014 ACS Chem. Biol. pmid:24191643
Bhatia H et al. miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. 2014 Biochim. Biophys. Acta pmid:24560669
Cheng R et al. Cloning and functional analysis of putative malonyl-CoA:acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101. 2013 World J. Microbiol. Biotechnol. pmid:23292648
Tang X et al. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. 2013 Metab. Eng. pmid:23353549
Rao G et al. Directed evolution of phloroglucinol synthase PhlD with increased stability for phloroglucinol production. 2013 Appl. Microbiol. Biotechnol. pmid:23358999