Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Starvation D013217 47 associated lipids
Fatty Liver D005234 48 associated lipids
Weight Loss D015431 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Gain D015430 101 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Starritt EC et al. Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. 2000 Am. J. Physiol. Endocrinol. Metab. pmid:10710500
Guzmán M et al. Do cytoskeletal components control fatty acid translocation into liver mitochondria? 2000 Trends Endocrinol. Metab. pmid:10675890
Pizer ES et al. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. 2000 Cancer Res. pmid:10667561
Jez JM et al. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. 2000 Biochemistry pmid:10653632
Shi J et al. The first 28 N-terminal amino acid residues of human heart muscle carnitine palmitoyltransferase I are essential for malonyl CoA sensitivity and high-affinity binding. 2000 Biochemistry pmid:10651636
Morillas M et al. Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. 2000 FEBS Lett. pmid:10648838
Laybutt DR et al. Muscle lipid accumulation and protein kinase C activation in the insulin-resistant chronically glucose-infused rat. 1999 Am. J. Physiol. pmid:10600797
Zammit VA The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function. 1999 Biochem. J. pmid:10527927
Goodwin GW and Taegtmeyer H Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. 1999 Am. J. Physiol. pmid:10516138
Sargueil F et al. High metabolism and subsequent elongation of 3-hydroxyeicosanoyl-CoA in very-long-chain fatty acid deficient PNS of Trembler mice. 1999 Neurosci. Lett. pmid:10505644
Funa N et al. A new pathway for polyketide synthesis in microorganisms. 1999 Nature pmid:10476972
Dreier J et al. Kinetic analysis of the actinorhodin aromatic polyketide synthase. 1999 J. Biol. Chem. pmid:10455191
Sugden MC et al. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. 1999 Horm. Metab. Res. pmid:10422724
Zhou P et al. Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis. 1999 Chem. Biol. pmid:10421763
Bao W et al. The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. 1999 J. Bacteriol. pmid:10419974
Jackson VN et al. Sequencing and functional expression of the malonyl-CoA-sensitive carnitine palmitoyltransferase from Drosophila melanogaster. 1999 Biochem. J. pmid:10417309
Kantor PF et al. Fatty acid oxidation in the reperfused ischemic heart. 1999 Am. J. Med. Sci. pmid:10408755
Domergue F et al. Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.). 1999 Eur. J. Biochem. pmid:10406955
Saha AK et al. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. 1999 Am. J. Physiol. pmid:10362615
Abo-Hashema KA et al. Liver mitochondria, confirmed as intact by complete suppression of succinate uptake and oxidation, possess a carnitine palmitoyltransferase I that is totally inhibited by malonyl CoA. 1999 Biochem. Biophys. Res. Commun. pmid:10329463
Kim YS and Kolattukudy PE Malonyl-CoA decarboxylase from the uropygial gland of waterfowl: purification, properties, immunological comparison, and role in regulating the synthesis of multimethyl-branched fatty acids. 1978 Arch. Biochem. Biophys. pmid:102255
Kozaki A and Sasaki Y Light-dependent changes in redox status of the plastidic acetyl-CoA carboxylase and its regulatory component. 1999 Biochem. J. pmid:10215591
Kim YS and Kolattukudy PE Purification and properties of malonyl-CoA decarboxylase from rat liver mitochondria and its immunological comparison with the enzymes from rat brain, heart, and mammary gland. 1978 Arch. Biochem. Biophys. pmid:101148
Blázquez C et al. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. 1999 J. Neurochem. pmid:10098887
New KJ et al. Comparisons of flux control exerted by mitochondrial outer-membrane carnitine palmitoyltransferase over ketogenesis in hepatocytes and mitochondria isolated from suckling or adult rats. 1999 Eur. J. Biochem. pmid:10092853
Shi J et al. A single amino acid change (substitution of glutamate 3 with alanine) in the N-terminal region of rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA inhibition and high affinity binding. 1999 J. Biol. Chem. pmid:10092622
pmid: