Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Hypothyroidism D007037 32 associated lipids
Insulin Resistance D007333 99 associated lipids
Ketosis D007662 13 associated lipids
Placental Insufficiency D010927 6 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Starvation D013217 47 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Myocardial Stunning D017682 10 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Longnus SL et al. Regulation of myocardial fatty acid oxidation by substrate supply. 2001 Am. J. Physiol. Heart Circ. Physiol. pmid:11557544
Zhou L et al. Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18083904
Sharma V et al. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18203848
King KL et al. Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power. 2005 Am. J. Physiol. Heart Circ. Physiol. pmid:15821035
Stanley WC et al. beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. 2003 Am. J. Physiol. Heart Circ. Physiol. pmid:12969881
Poirier M et al. Probing the link between citrate and malonyl-CoA in perfused rat hearts. 2002 Am. J. Physiol. Heart Circ. Physiol. pmid:12234788
Goodwin GW and Taegtmeyer H Improved energy homeostasis of the heart in the metabolic state of exercise. 2000 Am. J. Physiol. Heart Circ. Physiol. pmid:11009433
Martin J et al. Nutritional stress exacerbates hepatic steatosis induced by deletion of the histidine nucleotide-binding (Hint2) mitochondrial protein. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:26767982
Kim JY et al. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11934665
Taylor EB et al. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15644453
Beha A et al. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16380389
Yee AJ and Turcotte LP Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:12067845
Collier CA et al. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16478780
Kuhl JE et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16434556
Steinberg GR et al. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. 2003 Am. J. Physiol. Endocrinol. Metab. pmid:12441311
Vavrova E et al. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:27507552
Gray JP et al. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:26786775
Chien D et al. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. 2000 Am. J. Physiol. Endocrinol. Metab. pmid:10913024
Miura S et al. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. 2013 Am. J. Physiol. Endocrinol. Metab. pmid:23695215
Gao S et al. Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. 2013 Am. J. Physiol. Endocrinol. Metab. pmid:23736540