Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Body Weight D001835 333 associated lipids
Cleft Lip D002971 8 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypoglycemia D007003 13 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Kudej RK et al. Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia. 2011 Cardiovasc. Res. pmid:21835931
Folmes CD and Lopaschuk GD Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. 2007 Cardiovasc. Res. pmid:17126822
Ussher JR and Lopaschuk GD The malonyl CoA axis as a potential target for treating ischaemic heart disease. 2008 Cardiovasc. Res. pmid:18499682
Ussher JR et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. 2012 Cardiovasc. Res. pmid:22436846
Zhabyeyev P et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. 2013 Cardiovasc. Res. pmid:23257023
Mercier R et al. Excess membrane synthesis drives a primitive mode of cell proliferation. 2013 Cell pmid:23452849
Unger RH The hyperleptinemia of obesity-regulator of caloric surpluses. 2004 Cell pmid:15084251
Giordano A et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. 2005 Cell Death Differ. pmid:15846373
Dean JT et al. Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. 2009 Cell Metab. pmid:19490907
Kelley DE Pulling in more fat. 2005 Cell Metab. pmid:16271525
Neschen S et al. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. 2005 Cell Metab. pmid:16054099
López M et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. 2008 Cell Metab. pmid:18460330
Zammit VA and Arduini A The AMPK-malonyl-CoA-CPT1 axis in the control of hypothalamic neuronal function. 2008 Cell Metab. pmid:18762014
Zhang S and Kim KH Essential role of acetyl-CoA carboxylase in the glucose-induced insulin secretion in a pancreatic beta-cell line. 1998 Cell. Signal. pmid:9502115
Awakawa T et al. Physically discrete beta-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. 2009 Chem. Biol. pmid:19549600
Zhou P et al. Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis. 1999 Chem. Biol. pmid:10421763
Matharu AL et al. MCAT is not required for in vitro polyketide synthesis in a minimal actinorhodin polyketide synthase from Streptomyces coelicolor. 1998 Chem. Biol. pmid:9862793
Jensen K et al. Polyketide proofreading by an acyltransferase-like enzyme. 2012 Chem. Biol. pmid:22444588
Kage H et al. An iterative type I polyketide synthase initiates the biosynthesis of the antimycoplasma agent micacocidin. 2013 Chem. Biol. pmid:23790487
Ellis JM and Wolfgang MJ A genetically encoded metabolite sensor for malonyl-CoA. 2012 Chem. Biol. pmid:23102226
Hitchman TS et al. Catalytic self-acylation of type II polyketide synthase acyl carrier proteins. 1998 Chem. Biol. pmid:9479478
Hamed RB et al. Carboxymethylproline synthase catalysed syntheses of functionalised N-heterocycles. 2010 Chem. Commun. (Camb.) pmid:20162132
Tosin M et al. Malonyl carba(dethia)- and malonyl oxa(dethia)-coenzyme A as tools for trapping polyketide intermediates. 2009 Chembiochem pmid:19507202
Musiol EM et al. The ATâ‚‚ domain of KirCI loads malonyl extender units to the ACPs of the kirromycin PKS. 2013 Chembiochem pmid:23828654
Awakawa T et al. 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillum centenum. 2013 Chembiochem pmid:23609937
Kantor PF et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. 2000 Circ. Res. pmid:10720420
Zordoky BN et al. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation. 2014 Circ. Res. pmid:25001074
Lewandowski ED et al. Acute liver carnitine palmitoyltransferase I overexpression recapitulates reduced palmitate oxidation of cardiac hypertrophy. 2013 Circ. Res. pmid:22982985
Kolwicz SC et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. 2012 Circ. Res. pmid:22730442
Dyck JR et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. 2004 Circ. Res. pmid:15105298
Dagher Z et al. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. 2001 Circ. Res. pmid:11420304
Goodman SI et al. Methylmalonic/beta-hydroxy-n-valeric aciduria due to methylmalonyl-CoA mutase deficiency. 1978 Clin. Chim. Acta pmid:28187
Wen J and Kerr RG Purification and characterization of the fatty acid synthase from Bugula neritina. 2001 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:11250539
Gutières S et al. Cloning and tissue distribution of a carnitine palmitoyltransferase I gene in rainbow trout (Oncorhynchus mykiss). 2003 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:12781981
Lavarías S et al. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea: Palaemonidae). 2009 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:19171199
McGrath RP Unusual case of metabolic acidosis. 1989 Crit. Care Med. pmid:2909311
Schujman GE et al. FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. 2003 Dev. Cell pmid:12737802
Chen S et al. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. 1994 Diabetes pmid:8013751
Ido Y et al. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. 2002 Diabetes pmid:11756336
Roduit R et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. 2004 Diabetes pmid:15047616
Herrero L et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. 2005 Diabetes pmid:15677504
Prentki M et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. 2002 Diabetes pmid:12475783
Bandyopadhyay GK et al. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. 2006 Diabetes pmid:16873691
Nolan CJ et al. Fatty acid signaling in the beta-cell and insulin secretion. 2006 Diabetes pmid:17130640
López M et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. 2006 Diabetes pmid:16644689
McGarry JD and Foster DW Effects of exogenous fatty acid concentration on glucagon-induced changes in hepatic fatty acid metabolism. 1980 Diabetes pmid:7380110
BÃ¥venholm PN et al. Fatty acid oxidation and the regulation of malonyl-CoA in human muscle. 2000 Diabetes pmid:10909961
Dean D et al. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. 2000 Diabetes pmid:10923628
Oakes ND et al. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise: parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA. 1997 Diabetes pmid:9392490
Go Y et al. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis. 2016 Diabetes pmid:27385159