Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Body Weight D001835 333 associated lipids
Cleft Lip D002971 8 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypoglycemia D007003 13 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Antinozzi PA et al. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. 1998 J. Biol. Chem. pmid:9632669
Price NT et al. Alternative exon usage in the single CPT1 gene of Drosophila generates functional diversity in the kinetic properties of the enzyme: differential expression of alternatively spliced variants in Drosophila tissues. 2010 J. Biol. Chem. pmid:20061394
Heath RJ and Rock CO Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and beta-ketoacyl-acyl carrier protein synthases in Escherichia coli. 1995 J. Biol. Chem. pmid:7797547
Campbell FM et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. 2002 J. Biol. Chem. pmid:11734553
López-Viñas E et al. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. 2007 J. Biol. Chem. pmid:17452323
Nicot C et al. Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity. 2002 J. Biol. Chem. pmid:11790778
Morillas M et al. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain. 2002 J. Biol. Chem. pmid:11790793
Fiol CJ and Bieber LL Sigmoid kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase. Effect of pH and malonyl-CoA. 1984 J. Biol. Chem. pmid:6490647
Hu Z et al. A role for hypothalamic malonyl-CoA in the control of food intake. 2005 J. Biol. Chem. pmid:16219771
Boren J et al. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. 2003 J. Biol. Chem. pmid:12750369
Rainwater DL and Kolattukudy PE Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. 1985 J. Biol. Chem. pmid:3880746
Walters DW and Gilbert HF Thiol/disulfide redox equilibrium and kinetic behavior of chicken liver fatty acid synthase. 1986 J. Biol. Chem. pmid:3759951
Zhang L et al. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyltransferase and acyl carrier protein. 2003 J. Biol. Chem. pmid:12882974
Harwood HJ et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. 2003 J. Biol. Chem. pmid:12842871
Kudo N et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. 1995 J. Biol. Chem. pmid:7615556
Jin Z et al. Compartmentation of Metabolism of the C12-, C9-, and C5-n-dicarboxylates in Rat Liver, Investigated by Mass Isotopomer Analysis: ANAPLEROSIS FROM DODECANEDIOATE. 2015 J. Biol. Chem. pmid:26070565
Napal L et al. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme. 2003 J. Biol. Chem. pmid:12826662
Keyes SR et al. Rat liver microsomal elongation of fatty acids. Possible involvement of cytochrome b5. 1979 J. Biol. Chem. pmid:468787
McGarry JD and Foster DW In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis. 1979 J. Biol. Chem. pmid:468816
McGarry JD et al. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. 1978 J. Biol. Chem. pmid:711753