Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Body Weight D001835 333 associated lipids
Cleft Lip D002971 8 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypoglycemia D007003 13 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Pulinilkunnil T et al. Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites. 2003 J. Mol. Cell. Cardiol. pmid:12967632
Holness MJ et al. Impact of protein restriction on the regulation of cardiac carnitine palmitoyltransferase by malonyl-CoA. 1998 J. Mol. Cell. Cardiol. pmid:9710806
McMillin JB et al. Evidence for malonyl-CoA-sensitive carnitine acyl-CoA transferase activity in sarcoplasmic reticulum of canine heart. 1992 J. Mol. Cell. Cardiol. pmid:1625348
Bian F et al. Competition between acetate and oleate for the formation of malonyl-CoA and mitochondrial acetyl-CoA in the perfused rat heart. 2006 J. Mol. Cell. Cardiol. pmid:17020764
Dyck JR and Lopaschuk GD Malonyl CoA control of fatty acid oxidation in the ischemic heart. 2002 J. Mol. Cell. Cardiol. pmid:12392882
Hickson-Bick DL et al. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. 2000 J. Mol. Cell. Cardiol. pmid:10731449
Stanley WC et al. Pyruvate dehydrogenase activity and malonyl CoA levels in normal and ischemic swine myocardium: effects of dichloroacetate. 1996 J. Mol. Cell. Cardiol. pmid:8762030
Lauzier B et al. Post-translational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart. 2011 J. Mol. Cell. Cardiol. pmid:21510957
Qiu X et al. Refined structures of beta-ketoacyl-acyl carrier protein synthase III. 2001 J. Mol. Biol. pmid:11243824
Mo S et al. Improvement of FK506 Production in the High-Yielding Strain Streptomyces sp. RM7011 by Engineering the Supply of Allylmalonyl-CoA Through a Combination of Genetic and Chemical Approach. 2016 J. Microbiol. Biotechnol. pmid:26502733
Alfares A et al. Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. 2011 J. Med. Genet. pmid:21785126
Cheng JF et al. Synthesis and structure-activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors. 2006 J. Med. Chem. pmid:16509570
Gu YG et al. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. 2006 J. Med. Chem. pmid:16789734
Griffith DA et al. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. 2014 J. Med. Chem. pmid:25423286
Brown NF et al. Molecular characterization of L-CPT I deficiency in six patients: insights into function of the native enzyme. 2001 J. Lipid Res. pmid:11441142
Footitt EJ et al. Use of a long-chain triglyceride-restricted/medium-chain triglyceride-supplemented diet in a case of malonyl-CoA decarboxylase deficiency with cardiomyopathy. 2010 J. Inherit. Metab. Dis. pmid:20549361
Wu J et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. 2017 J. Ind. Microbiol. Biotechnol. pmid:28324236
Cao W et al. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. 2016 J. Ind. Microbiol. Biotechnol. pmid:26733394
Koirala N et al. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives. 2014 J. Ind. Microbiol. Biotechnol. pmid:25189810
Meng X et al. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. 2011 J. Ind. Microbiol. Biotechnol. pmid:20972897
Mencia-Huerta JM et al. Biosynthesis of platelet-activating factor (PAF)acether). III. Formation of PAF-acether from synthetic substrates by stimulated murine macrophages. 1982 J. Immunol. pmid:7086143
Monsénégo J et al. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. 2012 J. Hepatol. pmid:22037024
Derdak Z et al. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. 2013 J. Hepatol. pmid:23211317
Wheeler PR et al. Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis? 1990 J. Gen. Microbiol. pmid:2191079
Takamura Y and Nomura G Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. 1988 J. Gen. Microbiol. pmid:3075658
Chen Q et al. Fatty acid synthase inhibitors separated from oiltea camellia by high-speed counter-current chromatography. 2011 Jun-Jul J. Food Sci. pmid:22417422
Avidan O et al. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata. 2015 J. Exp. Bot. pmid:25922486
Verhoeyen ME et al. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. 2002 J. Exp. Bot. pmid:12324533
Richards JG et al. Substrate utilization during graded aerobic exercise in rainbow trout. 2002 J. Exp. Biol. pmid:12089210
Dann HM and Drackley JK Carnitine palmitoyltransferase I in liver of periparturient dairy cows: effects of prepartum intake, postpartum induction of ketosis, and periparturient disorders. 2005 J. Dairy Sci. pmid:16230690
Badaoui B et al. Goat acetyl-coenzyme A carboxylase alpha: molecular characterization, polymorphism, and association with milk traits. 2007 J. Dairy Sci. pmid:17235183
Corkey BE et al. Relationship between unusual hepatic acyl coenzyme A profiles and the pathogenesis of Reye syndrome. 1988 J. Clin. Invest. pmid:3417871
Jensen MD Fatty acid oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464664
Rasmussen BB et al. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464674
Foster DW Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. 2012 J. Clin. Invest. pmid:22833869
Boyd ME et al. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. 1981 J. Clin. Invest. pmid:7019243
BÃ¥venholm PN et al. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme A regulation. 2003 J. Clin. Endocrinol. Metab. pmid:12519834
Gao L et al. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. 2007 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:17442642
Peluso G et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. 2005 J. Cell. Physiol. pmid:15515015
Pender C et al. Expression of genes regulating malonyl-CoA in human skeletal muscle. 2006 J. Cell. Biochem. pmid:16721829
Jung SY et al. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. 2012 J. Cell. Biochem. pmid:22786746
Kennedy JA et al. Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. 2000 J. Cardiovasc. Pharmacol. pmid:11117381
Keung W et al. Intracerebroventricular leptin administration differentially alters cardiac energy metabolism in mice fed a low-fat and high-fat diet. 2011 J. Cardiovasc. Pharmacol. pmid:20980918
Rathnasingh C et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. 2012 J. Biotechnol. pmid:21723339
Rangan VS et al. Fatty acid synthase dimers containing catalytically active beta-ketoacyl synthase or malonyl/acetyltransferase domains in only one subunit can support fatty acid synthesis at the acyl carrier protein domains of both subunits. 1998 J. Biol. Chem. pmid:9857025
Kovachy RJ et al. Recognition, isolation, and characterization of rat liver D-methylmalonyl coenzyme A hydrolase. 1983 J. Biol. Chem. pmid:6885824
Esser V et al. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. 1993 J. Biol. Chem. pmid:8449948
Pan Y et al. The extreme C terminus of rat liver carnitine palmitoyltransferase I is not involved in malonyl-CoA sensitivity but in initial protein folding. 2002 J. Biol. Chem. pmid:12351641
Reszko AE et al. Regulation of malonyl-CoA concentration and turnover in the normal heart. 2004 J. Biol. Chem. pmid:15181001
Rangan VS and Smith S Expression in Escherichia coli and refolding of the malonyl-/acetyltransferase domain of the multifunctional animal fatty acid synthase. 1996 J. Biol. Chem. pmid:8940200