Malonyl-coa

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3249 references associated with Malonyl-coa in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for Malonyl-coa

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Malonyl-coa

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Angina Pectoris D000787 27 associated lipids
Body Weight D001835 333 associated lipids
Cleft Lip D002971 8 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypoglycemia D007003 13 associated lipids
Per page 10 20 | Total 20

PubChem Biomolecular Interactions and Pathways

NCBI Entrez Crosslinks

All references with Malonyl-coa

Download all related citations
Per page 10 20 50 100 | Total 927
Authors Title Published Journal PubMed Link
Levitan O et al. An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum. 2015 Plant J. pmid:26473332
Miyazawa T et al. Identification of Middle Chain Fatty Acyl-CoA Ligase Responsible for the Biosynthesis of 2-Alkylmalonyl-CoAs for Polyketide Extender Unit. 2015 J. Biol. Chem. pmid:26378232
Li M et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. 2015 Metab. Eng. pmid:26344106
Wu J et al. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. 2015 Sci Rep pmid:26323217
Colak G et al. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. 2015 Mol. Cell Proteomics pmid:26320211
Liang JL et al. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. 2016 World J. Microbiol. Biotechnol. pmid:27116968
Wu J et al. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. 2016 Bioresour. Technol. pmid:27450982
Vavrova E et al. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:27507552
Meng L et al. Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster rpp in Streptomyces avermitilis. 2016 Lett. Appl. Microbiol. pmid:27538855
Go Y et al. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis. 2016 Diabetes pmid:27385159