18alpha-glycyrrhetinic acid

18alpha-glycyrrhetinic acid is a lipid of Prenol Lipids (PR) class. 18alpha-glycyrrhetinic acid is associated with abnormalities such as Wiskott-Aldrich Syndrome. The involved functions are known as inhibitors, salivary gland development and branching morphogenesis.

Cross Reference

Introduction

To understand associated biological information of 18alpha-glycyrrhetinic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18alpha-glycyrrhetinic acid?

18alpha-glycyrrhetinic acid is suspected in and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

No disease MeSH terms mapped to the current reference collection.

PubChem Associated disorders and diseases

What pathways are associated with 18alpha-glycyrrhetinic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with 18alpha-glycyrrhetinic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

What genes are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 18alpha-glycyrrhetinic acid

Download all related citations
Per page 10 20 50 100 | Total 209
Authors Title Published Journal PubMed Link
Hardy ME et al. 18β-glycyrrhetinic acid inhibits rotavirus replication in culture. 2012 Virol. J. pmid:22616823
Tabuchi M et al. The blood-brain barrier permeability of 18β-glycyrrhetinic acid, a major metabolite of glycyrrhizin in Glycyrrhiza root, a constituent of the traditional Japanese medicine yokukansan. 2012 Cell. Mol. Neurobiol. pmid:22488528
Zhao K et al. Inhibition of gap junction channel attenuates the migration of breast cancer cells. 2012 Mol. Biol. Rep. pmid:21674188
Zhou X et al. Antimycobacterial and synergistic effects of 18β-glycyrrhetinic acid or glycyrrhetinic acid-30-piperazine in combination with isoniazid, rifampicin or streptomycin against Mycobacterium bovis. 2012 Phytother Res pmid:21656601
Matsumoto T et al. The anti-ulcer agent, irsogladine, increases insulin secretion by MIN6 cells. 2012 Eur. J. Pharmacol. pmid:22542662
Suh HN et al. Laminin-111 stimulates proliferation of mouse embryonic stem cells through a reduction of gap junctional intercellular communication via RhoA-mediated Cx43 phosphorylation and dissociation of Cx43/ZO-1/drebrin complex. 2012 Stem Cells Dev. pmid:22150760
Puchner A et al. Effects of 18β-Glycyrrhetinic acid in hTNFtg mice - a model of rheumatoid arthritis. 2012 Wien. Klin. Wochenschr. pmid:22210441
Zong L et al. 18α-glycyrrhetinic acid down-regulates expression of type I and III collagen via TGF-Β1/Smad signaling pathway in human and rat hepatic stellate cells. 2012 Int J Med Sci pmid:22811611
Goerke SM et al. Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon cocultivation. 2012 Tissue Eng Part A pmid:22731749
Moon MH et al. 18β-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis. 2012 Biochem. Biophys. Res. Commun. pmid:22465130
Li L et al. Myoendothelial coupling is unidirectional in guinea pig spiral modiolar arteries. 2012 Microvasc. Res. pmid:22580342
Yang JC et al. 18β-glycyrrhetinic acid potentiates Hsp90 inhibition-induced apoptosis in human epithelial ovarian carcinoma cells via activation of death receptor and mitochondrial pathway. 2012 Mol. Cell. Biochem. pmid:22865487
Li S et al. A novel transdermal fomulation of 18β-glycyrrhetic acid with lysine for improving bioavailability and efficacy. 2012 Skin Pharmacol Physiol pmid:22832704
Hong X et al. Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin. 2012 Cancer Lett. pmid:22115964
Cirillo N et al. Characterization of a novel oral glucocorticoid system and its possible role in disease. 2012 J. Dent. Res. pmid:22067259
Hendricks JM et al. 18β-glycyrrhetinic acid delivered orally induces isolated lymphoid follicle maturation at the intestinal mucosa and attenuates rotavirus shedding. 2012 PLoS ONE pmid:23152913
Liu Y et al. Synthesis and biological evaluation of novel spin labeled 18β-glycyrrhetinic acid derivatives. 2012 Bioorg. Med. Chem. Lett. pmid:23122524
Sharma G et al. 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. 2012 J. Cell. Physiol. pmid:21732363
Alderman SL and Vijayan MM 11β-Hydroxysteroid dehydrogenase type 2 in zebrafish brain: a functional role in hypothalamus-pituitary-interrenal axis regulation. 2012 J. Endocrinol. pmid:23042946
Du YM et al. 18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels. 2012 Acta Pharmacol. Sin. pmid:22609834