Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Mercury Poisoning D008630 4 associated lipids
Placental Insufficiency D010927 6 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Cleft Lip D002971 8 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Myocardial Stunning D017682 10 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Hypoglycemia D007003 13 associated lipids
Ketosis D007662 13 associated lipids
Cachexia D002100 21 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Wolfgang MJ et al. Regulation of hypothalamic malonyl-CoA by central glucose and leptin. 2007 Proc. Natl. Acad. Sci. U.S.A. pmid:18032600
Zhou L et al. Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18083904
Sharma V et al. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18203848
Bortolami S et al. Long chain fatty acyl-CoA modulation of H(2)O (2) release at mitochondrial complex I. 2008 J. Bioenerg. Biomembr. pmid:18214656
Neumann-Schmidt S and Zierz S Carnitine acyltransferases in normal human skeletal muscle and in muscle of patients with carnitine palmitoyltransferase deficiency. 1991 Neuromuscul. Disord. pmid:1822803
Janovská A et al. AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity. 2008 Mol. Cell. Endocrinol. pmid:18255222
Hayashi O and Satoh K Differences in concentrations of acetyl-CoA and malonyl-CoA in shoots and roots of Zea mays. 2008 Biosci. Biotechnol. Biochem. pmid:18323644
Wolfgang MJ and Lane MD Hypothalamic malonyl-coenzyme A and the control of energy balance. 2008 Mol. Endocrinol. pmid:18356287
Morash AJ et al. Intertissue regulation of carnitine palmitoyltransferase I (CPTI): mitochondrial membrane properties and gene expression in rainbow trout (Oncorhynchus mykiss). 2008 Biochim. Biophys. Acta pmid:18359285
Funabashi M et al. Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. 2008 J. Biol. Chem. pmid:18364359
Schujman GE et al. A malonyl-CoA-dependent switch in the bacterial response to a dysfunction of lipid metabolism. 2008 Mol. Microbiol. pmid:18384517
López M et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. 2008 Cell Metab. pmid:18460330
Ussher JR and Lopaschuk GD The malonyl CoA axis as a potential target for treating ischaemic heart disease. 2008 Cardiovasc. Res. pmid:18499682
Kong R et al. Characterization of a carbonyl-conjugated polyene precursor in 10-membered enediyne biosynthesis. 2008 J. Am. Chem. Soc. pmid:18529057
Wattanachaisaereekul S et al. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. 2008 Metab. Eng. pmid:18555717
Kashfi K and Cook GA Malonyl-CoA inhibits proteolysis of carnitine palmitoyltransferase. 1991 Biochem. Biophys. Res. Commun. pmid:1859420
Saggerson D Malonyl-CoA, a key signaling molecule in mammalian cells. 2008 Annu. Rev. Nutr. pmid:18598135
Singh P et al. Topological descriptors in modeling malonyl coenzyme A decarboxylase inhibitory activity: N-Alkyl-N-(1,1,1,3,3,3-hexafluoro-2-hydroxypropylphenyl)amide derivatives. 2009 J Enzyme Inhib Med Chem pmid:18608763
Yatscoff MA et al. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart. 2008 Pediatr. Res. pmid:18614968
Pénicaud L et al. Effect of insulin on the properties of liver carnitine palmitoyltransferase in the starved rat: assessment by the euglycemic hyperinsulinemic clamp. 1991 Metab. Clin. Exp. pmid:1861636
Kerner J et al. Rat liver mitochondrial carnitine palmitoyltransferase-I, hepatic carnitine, and malonyl-CoA: effect of starvation. 2008 Arch. Physiol. Biochem. pmid:18629681
Deshaies Y AMP kinase: heart, cancer and the CNS--view from the chair. 2008 Int J Obes (Lond) pmid:18719594
Lopaschuk GD AMP-activated protein kinase control of energy metabolism in the ischemic heart. 2008 Int J Obes (Lond) pmid:18719595
Lane MD et al. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. 2008 Int J Obes (Lond) pmid:18719599
Ghadiminejad I and Saggerson ED A study of properties and abundance of the components of liver carnitine palmitoyltransferases in mitochondrial inner and outer membranes. Effects of hypothyroidism, fasting and a ketotic diabetic state. 1991 Biochem. J. pmid:1872797
Zammit VA and Arduini A The AMPK-malonyl-CoA-CPT1 axis in the control of hypothalamic neuronal function. 2008 Cell Metab. pmid:18762014
Dzamko N et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. 2008 J. Physiol. (Lond.) pmid:18845612
Cha SH et al. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. 2008 Proc. Natl. Acad. Sci. U.S.A. pmid:18971329
Relat J et al. A characteristic Glu17 residue of pig carnitine palmitoyltransferase 1 is responsible for the low Km for carnitine and the low sensitivity to malonyl-CoA inhibition of the enzyme. 2009 FEBS J. pmid:19049515
Ghadiminejad I and Saggerson D A proportion of rat liver mitochondrial carnitine palmitoyltransferase can be made activatable by malonyl-CoA. 1991 Biochim. Biophys. Acta pmid:1911872
Coletta DK et al. Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. 2009 Diabetologia pmid:19169664
Lavarías S et al. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea: Palaemonidae). 2009 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:19171199
Wang Q et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. 2009 Hepatology pmid:19177596
Frøsig C et al. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. 2009 Am. J. Physiol. Endocrinol. Metab. pmid:19190265
Ussher JR and Lopaschuk GD Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. 2009 Basic Res. Cardiol. pmid:19242641
Zhao Z et al. Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by reducing malonyl-CoA levels in the liver and skeletal muscle. 2009 Life Sci. pmid:19250943
Katsuyama Y et al. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. 2009 J. Biol. Chem. pmid:19258320
Lane MD and Cha SH Effect of glucose and fructose on food intake via malonyl-CoA signaling in the brain. 2009 Biochem. Biophys. Res. Commun. pmid:19265677
Celik A et al. Decrease in malonyl-CoA and its background metabolic alterations in murine model of cancer cachexia. 2009 Oncol. Rep. pmid:19288015
Ide T et al. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. 2009 J. Nutr. Sci. Vitaminol. pmid:19352061
Downs SM et al. Fatty acid oxidation and meiotic resumption in mouse oocytes. 2009 Mol. Reprod. Dev. pmid:19455666
Dean JT et al. Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. 2009 Cell Metab. pmid:19490907
Tosin M et al. Malonyl carba(dethia)- and malonyl oxa(dethia)-coenzyme A as tools for trapping polyketide intermediates. 2009 Chembiochem pmid:19507202
Cha SH and Lane MD Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. 2009 Biochem. Biophys. Res. Commun. pmid:19523445
Awakawa T et al. Physically discrete beta-lactamase-type thioesterase catalyzes product release in atrochrysone synthesis by iterative type I polyketide synthase. 2009 Chem. Biol. pmid:19549600
Nilsson LA et al. Prolactin suppresses malonyl-CoA concentration in human adipose tissue. 2009 Horm. Metab. Res. pmid:19551610
Miyanaga A and Horinouchi S Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases. 2009 J. Antibiot. pmid:19557027
Zha W et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. 2009 Metab. Eng. pmid:19558964
Eustáquio AS et al. Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-L-methionine. 2009 Proc. Natl. Acad. Sci. U.S.A. pmid:19590008
Fowler ZL et al. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. 2009 Appl. Environ. Microbiol. pmid:19633125