Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Cha SH et al. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. 2008 Proc. Natl. Acad. Sci. U.S.A. pmid:18971329
Olson DP et al. Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake. 2010 Proc. Natl. Acad. Sci. U.S.A. pmid:20368432
Wolfgang MJ et al. Regulation of hypothalamic malonyl-CoA by central glucose and leptin. 2007 Proc. Natl. Acad. Sci. U.S.A. pmid:18032600
Jez JM et al. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:11959984
Thupari JN et al. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12060712
Hirsch J The search for new ways to treat obesity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12093927
Schwarzer D et al. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12384573
Oh W et al. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15677334
Cheng YQ et al. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. 2003 Proc. Natl. Acad. Sci. U.S.A. pmid:12598647
Tomas E et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12456889
Wolfgang MJ et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16651524
Mao J et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16717184
Murthy MS and Pande SV Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. 1987 Proc. Natl. Acad. Sci. U.S.A. pmid:3540964
Suo Z et al. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing. 2000 Proc. Natl. Acad. Sci. U.S.A. pmid:11106385
Cha SH et al. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:16203972
Hu Z et al. Hypothalamic malonyl-CoA as a mediator of feeding behavior. 2003 Proc. Natl. Acad. Sci. U.S.A. pmid:14532332
Xu P et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25049420
Gao S et al. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. 2011 Proc. Natl. Acad. Sci. U.S.A. pmid:21593415
McGarry JD et al. Insights into the topography of mitochondrial carnitine palmitoyltransferase gained from the use of proteases. 1992 Prog. Clin. Biol. Res. pmid:1438389
McGarry JD et al. Carnitine palmitoyltransferase--structure/function/regulatory relationships. 1990 Prog. Clin. Biol. Res. pmid:2183232