Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Zierz S and Schmitt U Inhibition of carnitine palmitoyltransferase by malonyl-CoA in human muscle is influenced by anesthesia. 1989 Anesthesiology pmid:2913880
Spiteller D et al. A method for trapping intermediates of polyketide biosynthesis with a nonhydrolyzable malonyl-coenzyme A analogue. 2005 Angew. Chem. Int. Ed. Engl. pmid:16208728
Ruderman NB et al. Lipid abnormalities in muscle of insulin-resistant rodents. The malonyl CoA hypothesis. 1997 Ann. N. Y. Acad. Sci. pmid:9329757
Foster DW The role of the carnitine system in human metabolism. 2004 Ann. N. Y. Acad. Sci. pmid:15590999
Ukropec J et al. An increase in peroxisomal fatty acid oxidation is not sufficient to prevent tissue lipid accumulation in hHTg rats. 2002 Ann. N. Y. Acad. Sci. pmid:12079837
Wakil SJ The relationship between structure and function for and the regulation of the enzymes of fatty acid synthesis. 1986 Ann. N. Y. Acad. Sci. pmid:2879500
McGarry JD and Foster DW Regulation of hepatic fatty acid oxidation and ketone body production. 1980 Annu. Rev. Biochem. pmid:6157353
Dowell P et al. Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. 2005 Annu. Rev. Biochem. pmid:15952896
Wolfgang MJ and Lane MD Control of energy homeostasis: role of enzymes and intermediates of fatty acid metabolism in the central nervous system. 2006 Annu. Rev. Nutr. pmid:16704352
Saggerson D Malonyl-CoA, a key signaling molecule in mammalian cells. 2008 Annu. Rev. Nutr. pmid:18598135
Slade RF et al. Characterization and inhibition of fatty acid synthase in pediatric tumor cell lines. 2003 Mar-Apr Anticancer Res. pmid:12820377
Hunaiti AA and Kolattukudy PE Source of methylmalonyl-coenzyme A for erythromycin synthesis: methylmalonyl-coenzyme A mutase from Streptomyces erythreus. 1984 Antimicrob. Agents Chemother. pmid:6143534
Fowler ZL et al. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. 2009 Appl. Environ. Microbiol. pmid:19633125
Rodríguez E et al. Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2). 2001 Appl. Environ. Microbiol. pmid:11526020
Leonard E et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. 2007 Appl. Environ. Microbiol. pmid:17468269
Chohnan S et al. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. 1997 Appl. Environ. Microbiol. pmid:9023936
Miyahisa I et al. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. 2005 Appl. Microbiol. Biotechnol. pmid:15770480
Rodriguez E et al. Engineered biosynthesis of 16-membered macrolides that require methoxymalonyl-ACP precursors in Streptomyces fradiae. 2004 Appl. Microbiol. Biotechnol. pmid:15179529
Rao G et al. Directed evolution of phloroglucinol synthase PhlD with increased stability for phloroglucinol production. 2013 Appl. Microbiol. Biotechnol. pmid:23358999
Coniglio JG et al. Effect of hypophysectomy and hormone replacement on fatty elongation in isolated microsomes of rat testes. 1988 Arch. Androl. pmid:3142378