Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Klimov AN et al. [Formation of mevalonic acid, sterols and bile acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in the liver of rabbits with experimental hypercholesterolemia]. 1987 Biokhimiia pmid:2882784
Wakil SJ The relationship between structure and function for and the regulation of the enzymes of fatty acid synthesis. 1986 Ann. N. Y. Acad. Sci. pmid:2879500
De Spiegeleer B et al. Direct assay for phosphotransacetylase and acetyl-coenzyme A carboxylase by high-performance liquid chromatography. 1986 Anal. Biochem. pmid:2879484
Gonzalez-Rios MC et al. Lipid metabolism in biotin-responsive multiple carboxylase deficiency. 1985 J. Inherit. Metab. Dis. pmid:2878112
Wölfle K et al. On the mechanism of action of methylmalonyl-CoA mutase. Change of the steric course on isotope substitution. 1986 Eur. J. Biochem. pmid:2870921
Scholte HR et al. The source of malonyl-CoA in rat heart. The calcium paradox releases acetyl-CoA carboxylase and not propionyl-CoA carboxylase. 1986 FEBS Lett. pmid:2869975
Malewiak MI et al. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet. 1985 Metab. Clin. Exp. pmid:2861554
De Spiegeleer BM et al. High performance liquid chromatography stability study of malonyl-coenzyme A, using statistical experimental designs. 1989 Biomed. Chromatogr. pmid:2804428
Horie S et al. Existence of acetyl-CoA-dependent chain elongation system in hepatic peroxisomes of rat: effects of clofibrate and di-(2-ethylhexyl)phthalate on the activity. 1989 Arch. Biochem. Biophys. pmid:2774583
Rous S Possible contribution of [2-3H]malate and [2, 3-3h]succinate tritium to the same tritiated NADPH pool for participation in fatty acid synthesis. 1978 Biochimie pmid:27240
Guzmán M and Castro J Ethanol increases the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA in short-term hepatocyte incubations. 1989 Biochim. Biophys. Acta pmid:2713390
Corkey BE et al. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. 1989 J. Biol. Chem. pmid:2689441
Jackowski S et al. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. 1989 J. Biol. Chem. pmid:2651445
Zammit VA et al. Target size analysis by radiation inactivation of carnitine palmitoyltransferase activity and malonyl-CoA binding in outer membranes from rat liver mitochondria. 1989 Biochem. J. pmid:2604707
Derrick JP and Ramsay RR L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. 1989 Biochem. J. pmid:2590167
Thampy KG Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. 1989 J. Biol. Chem. pmid:2572585
Koyama Y et al. Effect of histamine H1-receptor antagonist on the regulation of carbohydrate and lipid metabolism in rat liver. 1989 Biochem. Int. pmid:2569872
Marsh EN et al. Subunit interactions in Propionibacterium shermanii methylmalonyl-CoA mutase studied by analytical ultracentrifugation. 1989 Biochem. J. pmid:2569862
Winder WW et al. Muscle malonyl-CoA decreases during exercise. 1989 J. Appl. Physiol. pmid:2558099
Takeyama N et al. Altered hepatic fatty acid metabolism in endotoxicosis: effect of L-carnitine on survival. 1989 Am. J. Physiol. pmid:2521428