Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Woldegiorgis G et al. Functional characterization of mammalian mitochondrial carnitine palmitoyltransferases I and II expressed in the yeast Pichia pastoris. 2000 J. Nutr. pmid:10721894
Shirai Y et al. Metabolic regulation of leptin production in adipocytes: a role of fatty acid synthesis intermediates. 2004 J. Nutr. Biochem. pmid:15590268
Ide T et al. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. 2009 J. Nutr. Sci. Vitaminol. pmid:19352061
Yang N et al. C75 [4-methylene-2-octyl-5-oxo-tetrahydro-furan-3-carboxylic acid] activates carnitine palmitoyltransferase-1 in isolated mitochondria and intact cells without displacement of bound malonyl CoA. 2005 J. Pharmacol. Exp. Ther. pmid:15356215
Dzamko N et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. 2008 J. Physiol. (Lond.) pmid:18845612
Holloway GP et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. 2006 J. Physiol. (Lond.) pmid:16357012
Kadokawa H et al. Links between de novo fatty acid synthesis and leptin secretion in bovine adipocytes. 2007 J. Vet. Med. Sci. pmid:17409636
Martini WZ et al. Alteration of hepatic fatty acid metabolism after burn injury in pigs. 2001 Nov-Dec JPEN J Parenter Enteral Nutr pmid:11688934
Zhao Z et al. Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by reducing malonyl-CoA levels in the liver and skeletal muscle. 2009 Life Sci. pmid:19250943
Kumar S and Srinivasan KR Inactivation of chicken liver fatty acid synthetase by malonyl CoA. 1979 Dec 10-17 Life Sci. pmid:43942
Trumble GE et al. Evidence of a biotin dependent acetyl-coenzyme A carboxylase in rat muscle. 1991 Life Sci. pmid:1675755
Voltti H and Hassinen IE Effect of clofibrate on the hepatic concentrations of citric acid cycle intermediates and malonyl-CoA in the rat. 1981 Life Sci. pmid:7219043
Zammit VA et al. Lipid molecular order in liver mitochondrial outer membranes, and sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. 1998 Lipids pmid:9590624
DePooter H et al. Composition and variability of the branched-chain fatty acid fraction in the milk of goats and cows. 1981 Lipids pmid:7253839
Domergue F et al. Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the 3-ketoacyl-CoA synthase and the 3-hydroxyacyl-CoA dehydratase. 2000 Lipids pmid:10907783
Kashfi K et al. Diabetes and proteolysis: effects on carnitine palmitoyltransferase-I and malonyl-CoA binding. 1995 Lipids pmid:7637557
Slakey LL et al. De novo fatty acid synthesis and fatty acid elongation catalyzed by subcellular fractions from hog and human aorta. 1979 Lipids pmid:459710
Guo H et al. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. 2012 Lipids Health Dis pmid:22243683
Doenst T et al. Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. 2001 Metab. Clin. Exp. pmid:11555843
Pénicaud L et al. Effect of insulin on the properties of liver carnitine palmitoyltransferase in the starved rat: assessment by the euglycemic hyperinsulinemic clamp. 1991 Metab. Clin. Exp. pmid:1861636