Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Guay C et al. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. 2007 J. Biol. Chem. pmid:17928289
Thomson DM et al. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17925454
Sebastián D et al. CPT I overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17062841
Beha A et al. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16380389
Murase T et al. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. 2006 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:16410398
Holloway GP et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. 2006 J. Physiol. (Lond.) pmid:16357012
Bell JA et al. Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. 2006 Diabetologia pmid:16868746
Borthwick K et al. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. 2006 J. Biol. Chem. pmid:16908527
Wolf G The regulation of food intake by hypothalamic malonyl-coenzyme A: the MaloA hypothesis. 2006 Nutr. Rev. pmid:16958315
Schujman GE et al. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. 2006 EMBO J. pmid:16932747
Minkler PE et al. Quantification of malonyl-coenzyme A in tissue specimens by high-performance liquid chromatography/mass spectrometry. 2006 Anal. Biochem. pmid:16545769
Wolfgang MJ et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16651524
Ruderman NB and Saha AK Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A. 2006 Obesity (Silver Spring) pmid:16642960
López M et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. 2006 Diabetes pmid:16644689
Gu YG et al. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. 2006 J. Med. Chem. pmid:16789734
Neels JG and Olefsky JM Cell signaling. A new way to burn fat. 2006 Science pmid:16794069
Mao J et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16717184
Oefner C et al. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. 2006 Acta Crystallogr. D Biol. Crystallogr. pmid:16699188
Pender C et al. Expression of genes regulating malonyl-CoA in human skeletal muscle. 2006 J. Cell. Biochem. pmid:16721829
Wolfgang MJ and Lane MD Control of energy homeostasis: role of enzymes and intermediates of fatty acid metabolism in the central nervous system. 2006 Annu. Rev. Nutr. pmid:16704352