Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Alcoholism D000437 27 associated lipids
Body Weight D001835 333 associated lipids
Cachexia D002100 21 associated lipids
Cleft Lip D002971 8 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Heart Failure D006333 36 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hypertension D006973 115 associated lipids
Hypoglycemia D007003 13 associated lipids
Hypothyroidism D007037 32 associated lipids
Insulin Resistance D007333 99 associated lipids
Ketosis D007662 13 associated lipids
Medulloblastoma D008527 22 associated lipids
Mercury Poisoning D008630 4 associated lipids
Placental Insufficiency D010927 6 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Starvation D013217 47 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Myocardial Stunning D017682 10 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Katsuyama Y et al. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. 2009 J. Biol. Chem. pmid:19258320
Goodwin GW et al. Regulation of energy metabolism of the heart during acute increase in heart work. 1998 J. Biol. Chem. pmid:9792661
Cohen I et al. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 mediates import into the outer mitochondrial membrane and is essential for activity and malonyl-CoA sensitivity. 1998 J. Biol. Chem. pmid:9792707
Antinozzi PA et al. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. 1998 J. Biol. Chem. pmid:9632669
Velasco G et al. Malonyl-CoA-independent acute control of hepatic carnitine palmitoyltransferase I activity. Role of Ca2+/calmodulin-dependent protein kinase II and cytoskeletal components. 1998 J. Biol. Chem. pmid:9705278
Hoppel CL et al. The malonyl-CoA-sensitive form of carnitine palmitoyltransferase is not localized exclusively in the outer membrane of rat liver mitochondria. 1998 J. Biol. Chem. pmid:9722587
Shi J et al. A single amino acid change (substitution of glutamate 3 with alanine) in the N-terminal region of rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA inhibition and high affinity binding. 1999 J. Biol. Chem. pmid:10092622
Price NT et al. Alternative exon usage in the single CPT1 gene of Drosophila generates functional diversity in the kinetic properties of the enzyme: differential expression of alternatively spliced variants in Drosophila tissues. 2010 J. Biol. Chem. pmid:20061394
Cook GA The hypoglycemic sulfonylureas glyburide and tolbutamide inhibit fatty acid oxidation by inhibiting carnitine palmitoyltransferase. 1987 J. Biol. Chem. pmid:3104327
Dreier J et al. Kinetic analysis of the actinorhodin aromatic polyketide synthase. 1999 J. Biol. Chem. pmid:10455191
Saddik M et al. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. 1993 J. Biol. Chem. pmid:7902355
Heath RJ and Rock CO Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and beta-ketoacyl-acyl carrier protein synthases in Escherichia coli. 1995 J. Biol. Chem. pmid:7797547
Li S et al. Molecular analysis of the role of tyrosine 224 in the active site of Streptomyces coelicolor RppA, a bacterial type III polyketide synthase. 2007 J. Biol. Chem. pmid:17331946
Murthy MS and Pande SV Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. 1994 J. Biol. Chem. pmid:8034571
Weis BC et al. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. 1994 J. Biol. Chem. pmid:8034622
López-Viñas E et al. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. 2007 J. Biol. Chem. pmid:17452323
Nicot C et al. Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity. 2002 J. Biol. Chem. pmid:11790778
Morillas M et al. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain. 2002 J. Biol. Chem. pmid:11790793
Esser V et al. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. 1993 J. Biol. Chem. pmid:8449948
Thampy KG Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. 1989 J. Biol. Chem. pmid:2572585
Jackowski S et al. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. 1989 J. Biol. Chem. pmid:2651445
Bian F et al. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. 2005 J. Biol. Chem. pmid:15611129
Liu H et al. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. 2005 J. Biol. Chem. pmid:15579906
Reszko AE et al. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. 2004 J. Biol. Chem. pmid:14982940
Atkinson LL et al. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. 2002 J. Biol. Chem. pmid:12058043
Sleeman MC and Schofield CJ Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis. 2004 J. Biol. Chem. pmid:14625287
Pan Y et al. The extreme C terminus of rat liver carnitine palmitoyltransferase I is not involved in malonyl-CoA sensitivity but in initial protein folding. 2002 J. Biol. Chem. pmid:12351641
Lopaschuk GD et al. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. 1994 J. Biol. Chem. pmid:7929291
Brown NF et al. Expression of a cDNA for rat liver carnitine palmitoyltransferase I in yeast establishes that catalytic activity and malonyl-CoA sensitivity reside in a single polypeptide. 1994 J. Biol. Chem. pmid:7929364
Decaux JF et al. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration. 1988 J. Biol. Chem. pmid:2893801
Funa N et al. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. 2005 J. Biol. Chem. pmid:15701630
Cook GA and Gamble MS Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. 1987 J. Biol. Chem. pmid:2950085
Rainwater DL and Kolattukudy PE Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. 1983 J. Biol. Chem. pmid:6402506
Borthwick K et al. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. 2006 J. Biol. Chem. pmid:16908527
Morillas M et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. 2003 J. Biol. Chem. pmid:12499375
Zhang L et al. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyltransferase and acyl carrier protein. 2003 J. Biol. Chem. pmid:12882974
Jackson VN et al. Identification of positive and negative determinants of malonyl-CoA sensitivity and carnitine affinity within the amino termini of rat liver- and muscle-type carnitine palmitoyltransferase I. 2000 J. Biol. Chem. pmid:10969089
Declercq PE et al. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. 1987 J. Biol. Chem. pmid:3597441
Keyes SR and Cinti DL Biochemical properties of cytochrome b5-dependent microsomal fatty acid elongation and identification of products. 1980 J. Biol. Chem. pmid:7440546
Kudo N et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. 1995 J. Biol. Chem. pmid:7615556
Gamble MS and Cook GA Alteration of the apparent Ki of carnitine palmitoyltransferase for malonyl-CoA by the diabetic state and reversal by insulin. 1985 J. Biol. Chem. pmid:3894356
Soulié JM et al. Transient kinetic studies of fatty acid synthetase. A kinetic self-editing mechanism for the loading of acetyl and malonyl residues and the role of coenzyme A. 1984 J. Biol. Chem. pmid:6706923
Gokulan K et al. Crystal structure of Mycobacterium tuberculosis polyketide synthase 11 (PKS11) reveals intermediates in the synthesis of methyl-branched alkylpyrones. 2013 J. Biol. Chem. pmid:23615910
Gande R et al. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. 2004 J. Biol. Chem. pmid:15308633
Kerner J et al. Phosphorylation of rat liver mitochondrial carnitine palmitoyltransferase-I: effect on the kinetic properties of the enzyme. 2004 J. Biol. Chem. pmid:15247243
Onay-Besikci A et al. gAd-globular head domain of adiponectin increases fatty acid oxidation in newborn rabbit hearts. 2004 J. Biol. Chem. pmid:15269215
Reszko AE et al. Regulation of malonyl-CoA concentration and turnover in the normal heart. 2004 J. Biol. Chem. pmid:15181001
Fernandes ND and Kolattukudy PE A newly identified methyl-branched chain fatty acid synthesizing enzyme from Mycobacterium tuberculosis var. bovis BCG. 1998 J. Biol. Chem. pmid:9446591
Rangan VS and Smith S Expression in Escherichia coli and refolding of the malonyl-/acetyltransferase domain of the multifunctional animal fatty acid synthase. 1996 J. Biol. Chem. pmid:8940200
Rathnasingh C et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. 2012 J. Biotechnol. pmid:21723339