Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Brown NF et al. Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes. 1997 Biochem. J. pmid:9355756
Roughan PG Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase. 1997 Biochem. J. pmid:9355762
Prip-Buus C et al. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes. 1990 Biochem. J. pmid:2167069
Ghadiminejad I and Saggerson ED A study of properties and abundance of the components of liver carnitine palmitoyltransferases in mitochondrial inner and outer membranes. Effects of hypothyroidism, fasting and a ketotic diabetic state. 1991 Biochem. J. pmid:1872797
Ramsay RR et al. Carnitine palmitoyltransferase in human erythrocyte membrane. Properties and malonyl-CoA sensitivity. 1991 Biochem. J. pmid:2039446
Mills SE et al. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. 1984 Biochem. J. pmid:6743235
Lloyd AC et al. Intertissue differences in the hysteretic behaviour of carnitine palmitoyltransferase in the presence of malonyl-CoA. 1986 Biochem. J. pmid:3800884
Weinstein I et al. Regulation by oestrogen of carnitine palmitoyltransferase in hepatic mitochondria. 1986 Biochem. J. pmid:3800903
Jones AV et al. Inhibition of plant fatty acid synthesis by nitroimidazoles. 1981 Biochem. J. pmid:7325993
Brady LJ et al. Hepatic mitochondrial inner-membrane properties, beta-oxidation and carnitine palmitoyltransferases A and B. Effects of genetic obesity and starvation. 1986 Biochem. J. pmid:3954744
Mikkelsen J et al. Evidence that the medium-chain acyltransferase of lactating-goat mammary-gland fatty acid synthetase is identical with the acetyl/malonyltransferase. 1985 Biochem. J. pmid:4004809
Bird MI et al. Carnitine acyltransferase activities in rat brain mitochondria. Bimodal distribution, kinetic constants, regulation by malonyl-CoA and developmental pattern. 1985 Biochem. J. pmid:3977877
Zammit VA Reversible sensitization and desensitization of carnitine palmitoyltransferase I to inhibition by malonyl-CoA in isolated rat liver mitochondria. Significance for the mechanism of malonyl-CoA-induced sensitization. 1983 Biochem. J. pmid:6626153
McCormick K et al. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation. 1983 Biochem. J. pmid:6661211
Lee GY et al. Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. 2004 Biochem. J. pmid:14641110
Zammit VA Increased sensitivity of carnitine palmitoyltransferase I activity to malonyl-CoA inhibition after preincubation of intact rat liver mitochondria with micromolar concentrations of malonyl-CoA in vitro. 1983 Biochem. J. pmid:6870813
Stephens TW et al. Effect of pH on malonyl-CoA inhibition of carnitine palmitoyltransferase I. 1983 Biochem. J. pmid:6882380
Skelly RH et al. A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties. 1998 Biochem. J. pmid:9531497
Knudsen J Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase. 1979 Biochem. J. pmid:574008
Child CJ and Shoolingin-Jordan PM Inactivation of the polyketide synthase, 6-methylsalicylic acid synthase, by the specific modification of Cys-204 of the beta-ketoacyl synthase by the fungal mycotoxin cerulenin. 1998 Biochem. J. pmid:9480912