Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Katsuyama Y et al. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. 2009 J. Biol. Chem. pmid:19258320
Goodwin GW et al. Regulation of energy metabolism of the heart during acute increase in heart work. 1998 J. Biol. Chem. pmid:9792661
Jackowski S et al. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. 1989 J. Biol. Chem. pmid:2651445
Reszko AE et al. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. 2004 J. Biol. Chem. pmid:14982940
Sleeman MC and Schofield CJ Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis. 2004 J. Biol. Chem. pmid:14625287
Cook GA and Gamble MS Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. 1987 J. Biol. Chem. pmid:2950085
Rainwater DL and Kolattukudy PE Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. 1983 J. Biol. Chem. pmid:6402506
Borthwick K et al. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. 2006 J. Biol. Chem. pmid:16908527
Morillas M et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. 2003 J. Biol. Chem. pmid:12499375
Zhang L et al. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyltransferase and acyl carrier protein. 2003 J. Biol. Chem. pmid:12882974
Declercq PE et al. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. 1987 J. Biol. Chem. pmid:3597441
Keyes SR and Cinti DL Biochemical properties of cytochrome b5-dependent microsomal fatty acid elongation and identification of products. 1980 J. Biol. Chem. pmid:7440546
Onay-Besikci A et al. gAd-globular head domain of adiponectin increases fatty acid oxidation in newborn rabbit hearts. 2004 J. Biol. Chem. pmid:15269215
Reszko AE et al. Regulation of malonyl-CoA concentration and turnover in the normal heart. 2004 J. Biol. Chem. pmid:15181001
Fernandes ND and Kolattukudy PE A newly identified methyl-branched chain fatty acid synthesizing enzyme from Mycobacterium tuberculosis var. bovis BCG. 1998 J. Biol. Chem. pmid:9446591
Bortolami S et al. Long chain fatty acyl-CoA modulation of H(2)O (2) release at mitochondrial complex I. 2008 J. Bioenerg. Biomembr. pmid:18214656
Kikuchi S and Kusaka T New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. 1982 J. Biochem. pmid:7142122
Kawaguchi A et al. Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes. 1980 J. Biochem. pmid:7419496
Bao W et al. The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. 1999 J. Bacteriol. pmid:10419974
Takagi M et al. Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. 2010 J. Bacteriol. pmid:19854913
Smith AC and Cronan JE Dimerization of the bacterial biotin carboxylase subunit is required for acetyl coenzyme A carboxylase activity in vivo. 2012 J. Bacteriol. pmid:22037404
Menendez C et al. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. 1999 J. Bacteriol. pmid:9973333
Furukawa H et al. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. 1993 J. Bacteriol. pmid:8509326
Hügler M et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. 2002 J. Bacteriol. pmid:11948153
Thompson TE and Zeikus JG Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway. 1988 J. Bacteriol. pmid:3410821
Jackowski S and Rock CO Consequences of reduced intracellular coenzyme A content in Escherichia coli. 1986 J. Bacteriol. pmid:3519582
Revill WP et al. Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant. 1995 J. Bacteriol. pmid:7608065
Elayan IM and Winder WW Effect of glucose infusion on muscle malonyl-CoA during exercise. 1991 J. Appl. Physiol. pmid:2055826
Duan C and Winder WW Control of malonyl-CoA by glucose and insulin in perfused skeletal muscle. 1993 J. Appl. Physiol. pmid:8335589
Winder WW et al. Effect of adrenodemedullation on decline in muscle malonyl-CoA during exercise. 1993 J. Appl. Physiol. pmid:8335590
Winder WW et al. Muscle malonyl-CoA decreases during exercise. 1989 J. Appl. Physiol. pmid:2558099
Park SH et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. 2002 J. Appl. Physiol. pmid:12433937
Odland LM et al. Effects of high fat provision on muscle PDH activation and malonyl-CoA content in moderate exercise. 2000 J. Appl. Physiol. pmid:11090589
Winder WW and Holmes BF Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. 2000 J. Appl. Physiol. pmid:11090599
Maclean PS and Winder WW Caffeine decreases malonyl-CoA in isolated perfused skeletal muscle of rats. 1995 J. Appl. Physiol. pmid:7615461
Rasmussen BB et al. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase. 1998 J. Appl. Physiol. pmid:9804562
Merrill GF et al. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle. 1998 J. Appl. Physiol. pmid:9804598
Rasmussen BB and Winder WW Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. 1997 J. Appl. Physiol. pmid:9338417
Duan C and Winder WW Nerve stimulation decreases malonyl-CoA in skeletal muscle. 1992 J. Appl. Physiol. pmid:1349012
Hutber CA et al. Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise. 1997 J. Appl. Physiol. pmid:9390963
McCormack JG et al. Effects of ranolazine on oxidative substrate preference in epitrochlearis muscle. 1996 J. Appl. Physiol. pmid:8872662
Kimber NE et al. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability. 2013 J. Appl. Physiol. pmid:23519231
Miyanaga A and Horinouchi S Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases. 2009 J. Antibiot. pmid:19557027
Ma SM et al. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. 2007 J. Am. Chem. Soc. pmid:17696354
Jeong JC et al. Exploiting the reaction flexibility of a type III polyketide synthase through in vitro pathway manipulation. 2005 J. Am. Chem. Soc. pmid:15631450
Abe I et al. A plant type III polyketide synthase that produces pentaketide chromone. 2005 J. Am. Chem. Soc. pmid:15686354
Kong R et al. Characterization of a carbonyl-conjugated polyene precursor in 10-membered enediyne biosynthesis. 2008 J. Am. Chem. Soc. pmid:18529057
Mo S et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. 2011 J. Am. Chem. Soc. pmid:21175203
Singh P et al. Topological descriptors in modeling malonyl coenzyme A decarboxylase inhibitory activity: N-Alkyl-N-(1,1,1,3,3,3-hexafluoro-2-hydroxypropylphenyl)amide derivatives. 2009 J Enzyme Inhib Med Chem pmid:18608763
Ruderman NB and Dean D Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle. 1998 J Basic Clin Physiol Pharmacol pmid:10212840