Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Kennedy JA et al. Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. 2000 J. Cardiovasc. Pharmacol. pmid:11117381
Keung W et al. Intracerebroventricular leptin administration differentially alters cardiac energy metabolism in mice fed a low-fat and high-fat diet. 2011 J. Cardiovasc. Pharmacol. pmid:20980918
Pender C et al. Expression of genes regulating malonyl-CoA in human skeletal muscle. 2006 J. Cell. Biochem. pmid:16721829
Jung SY et al. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. 2012 J. Cell. Biochem. pmid:22786746
Peluso G et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. 2005 J. Cell. Physiol. pmid:15515015
Gao L et al. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. 2007 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:17442642
BÃ¥venholm PN et al. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme A regulation. 2003 J. Clin. Endocrinol. Metab. pmid:12519834
Jensen MD Fatty acid oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464664
Rasmussen BB et al. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464674
Foster DW Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. 2012 J. Clin. Invest. pmid:22833869
Boyd ME et al. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. 1981 J. Clin. Invest. pmid:7019243
Badaoui B et al. Goat acetyl-coenzyme A carboxylase alpha: molecular characterization, polymorphism, and association with milk traits. 2007 J. Dairy Sci. pmid:17235183
Mukherjee S and Katiyar SS Inactivation of enoyl-CoA reductase in pigeon liver fatty acid synthetase by pyridoxal 5'-phosphate: evidence for the presence of one lysine residue at the active site. 1998 J. Enzym. Inhib. pmid:9629539
Richards JG et al. Substrate utilization during graded aerobic exercise in rainbow trout. 2002 J. Exp. Biol. pmid:12089210
Verhoeyen ME et al. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. 2002 J. Exp. Bot. pmid:12324533
Chen Q et al. Fatty acid synthase inhibitors separated from oiltea camellia by high-speed counter-current chromatography. 2011 Jun-Jul J. Food Sci. pmid:22417422
Wheeler PR et al. Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis? 1990 J. Gen. Microbiol. pmid:2191079
Derdak Z et al. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. 2013 J. Hepatol. pmid:23211317
Meng X et al. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. 2011 J. Ind. Microbiol. Biotechnol. pmid:20972897
Gonzalez-Rios MC et al. Lipid metabolism in biotin-responsive multiple carboxylase deficiency. 1985 J. Inherit. Metab. Dis. pmid:2878112
Brown NF et al. Molecular characterization of L-CPT I deficiency in six patients: insights into function of the native enzyme. 2001 J. Lipid Res. pmid:11441142
Cheng JF et al. Synthesis and structure-activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors. 2006 J. Med. Chem. pmid:16509570
Gu YG et al. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. 2006 J. Med. Chem. pmid:16789734
Qiu X et al. Refined structures of beta-ketoacyl-acyl carrier protein synthase III. 2001 J. Mol. Biol. pmid:11243824
Holness MJ et al. Impact of protein restriction on the regulation of cardiac carnitine palmitoyltransferase by malonyl-CoA. 1998 J. Mol. Cell. Cardiol. pmid:9710806
McMillin JB et al. Evidence for malonyl-CoA-sensitive carnitine acyl-CoA transferase activity in sarcoplasmic reticulum of canine heart. 1992 J. Mol. Cell. Cardiol. pmid:1625348
Hudson EK et al. Insulin-associated changes in carnitine palmitoyltransferase in cultured neonatal rat cardiac myocytes. 1995 J. Mol. Cell. Cardiol. pmid:7760380
Dyck JR and Lopaschuk GD Malonyl CoA control of fatty acid oxidation in the ischemic heart. 2002 J. Mol. Cell. Cardiol. pmid:12392882
Hickson-Bick DL et al. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. 2000 J. Mol. Cell. Cardiol. pmid:10731449
Lauzier B et al. Post-translational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart. 2011 J. Mol. Cell. Cardiol. pmid:21510957
Tang GL et al. Polyketide chain skipping mechanism in the biosynthesis of the hybrid nonribosomal peptide-polyketide antitumor antibiotic leinamycin in Streptomyces atroolivaceus S-140. 2006 J. Nat. Prod. pmid:16562841
Blázquez C et al. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. 1998 J. Neurochem. pmid:9751193
Blázquez C et al. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. 1999 J. Neurochem. pmid:10098887
Reamy AA and Wolfgang MJ Carnitine palmitoyltransferase-1c gain-of-function in the brain results in postnatal microencephaly. 2011 J. Neurochem. pmid:21592121
Surendran S et al. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene. 2001 J. Neurosci. Res. pmid:11550227
Schulz H Regulation of fatty acid oxidation in heart. 1994 J. Nutr. pmid:8308565
Degrace P et al. Hepatic steatosis is not due to impaired fatty acid oxidation capacities in C57BL/6J mice fed the conjugated trans-10,cis-12-isomer of linoleic acid. 2004 J. Nutr. pmid:15051838
Corkey BE et al. The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. 2000 J. Nutr. pmid:10721892
Woldegiorgis G et al. Functional characterization of mammalian mitochondrial carnitine palmitoyltransferases I and II expressed in the yeast Pichia pastoris. 2000 J. Nutr. pmid:10721894
Cherbuy C et al. Oleate metabolism in pig enterocytes is characterized by an increased oxidation rate in the presence of a high esterification rate within two days after birth. 2012 J. Nutr. pmid:22223579
Power GW and Newsholme EA Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle. 1997 J. Nutr. pmid:9349840
Shirai Y et al. Metabolic regulation of leptin production in adipocytes: a role of fatty acid synthesis intermediates. 2004 J. Nutr. Biochem. pmid:15590268
Ide T et al. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. 2009 J. Nutr. Sci. Vitaminol. pmid:19352061
Yang N et al. C75 [4-methylene-2-octyl-5-oxo-tetrahydro-furan-3-carboxylic acid] activates carnitine palmitoyltransferase-1 in isolated mitochondria and intact cells without displacement of bound malonyl CoA. 2005 J. Pharmacol. Exp. Ther. pmid:15356215
Dzamko N et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. 2008 J. Physiol. (Lond.) pmid:18845612
Holloway GP et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. 2006 J. Physiol. (Lond.) pmid:16357012
Kadokawa H et al. Links between de novo fatty acid synthesis and leptin secretion in bovine adipocytes. 2007 J. Vet. Med. Sci. pmid:17409636
Martini WZ et al. Alteration of hepatic fatty acid metabolism after burn injury in pigs. 2001 Nov-Dec JPEN J Parenter Enteral Nutr pmid:11688934
Zhao Z et al. Rosiglitazone and fenofibrate improve insulin sensitivity of pre-diabetic OLETF rats by reducing malonyl-CoA levels in the liver and skeletal muscle. 2009 Life Sci. pmid:19250943
Kumar S and Srinivasan KR Inactivation of chicken liver fatty acid synthetase by malonyl CoA. 1979 Dec 10-17 Life Sci. pmid:43942
Trumble GE et al. Evidence of a biotin dependent acetyl-coenzyme A carboxylase in rat muscle. 1991 Life Sci. pmid:1675755
Voltti H and Hassinen IE Effect of clofibrate on the hepatic concentrations of citric acid cycle intermediates and malonyl-CoA in the rat. 1981 Life Sci. pmid:7219043
Zammit VA et al. Lipid molecular order in liver mitochondrial outer membranes, and sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. 1998 Lipids pmid:9590624
DePooter H et al. Composition and variability of the branched-chain fatty acid fraction in the milk of goats and cows. 1981 Lipids pmid:7253839
Domergue F et al. Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the 3-ketoacyl-CoA synthase and the 3-hydroxyacyl-CoA dehydratase. 2000 Lipids pmid:10907783
Kashfi K et al. Diabetes and proteolysis: effects on carnitine palmitoyltransferase-I and malonyl-CoA binding. 1995 Lipids pmid:7637557
Slakey LL et al. De novo fatty acid synthesis and fatty acid elongation catalyzed by subcellular fractions from hog and human aorta. 1979 Lipids pmid:459710
Guo H et al. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. 2012 Lipids Health Dis pmid:22243683
Doenst T et al. Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. 2001 Metab. Clin. Exp. pmid:11555843
Kurowski TG et al. Malonyl coenzyme A and adiposity in the Dahl salt-sensitive rat: effects of pioglitazone. 1996 Metab. Clin. Exp. pmid:8609842
Pénicaud L et al. Effect of insulin on the properties of liver carnitine palmitoyltransferase in the starved rat: assessment by the euglycemic hyperinsulinemic clamp. 1991 Metab. Clin. Exp. pmid:1861636
Malewiak MI et al. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet. 1985 Metab. Clin. Exp. pmid:2861554
Xu Y et al. Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy. 2014 Metab. Clin. Exp. pmid:24650564
Zha W et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. 2009 Metab. Eng. pmid:19558964
Liu T et al. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. 2010 Metab. Eng. pmid:20184964
Xu P et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. 2011 Metab. Eng. pmid:21763447
Richardson MT et al. Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase. 1999 Metab. Eng. pmid:10935930
Wattanachaisaereekul S et al. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. 2008 Metab. Eng. pmid:18555717
Tang X et al. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. 2013 Metab. Eng. pmid:23353549
Zabala D et al. Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. 2013 Metab. Eng. pmid:24148183
Kolattukudy PE et al. Malonyl-CoA decarboxylase from avian, mammalian, and microbial sources. 1981 Meth. Enzymol. pmid:6792462
Kolhouse JF et al. L-methylmalonyl-CoA mutase from human placenta. 1988 Meth. Enzymol. pmid:2907367
Stabler SP and Allen RH DL-methylmalonyl-CoA racemase from rat liver. 1988 Meth. Enzymol. pmid:3071715
Burns BP et al. Acetyl-CoA carboxylase activity in Helicobacter pylori and the requirement of increased CO2 for growth. 1995 Microbiology (Reading, Engl.) pmid:8574404
Jeya M et al. A type III polyketide synthase from Rhizobium etli condenses malonyl CoAs to a heptaketide pyrone with unusually high catalytic efficiency. 2012 Mol Biosyst pmid:23059854
Sharma V et al. Functional effects of protein kinases and peroxynitrite on cardiac carnitine palmitoyltransferase-1 in isolated mitochondria. 2010 Mol. Cell. Biochem. pmid:19862603
Cook GA and Lappi MD Carnitine palmitoyltransferase in the heart is controlled by a different mechanism than the hepatic enzyme. 1992 Mol. Cell. Biochem. pmid:1480153
Wang D et al. The liver isoform of carnitine palmitoyltransferase I is activated in neonatal rat cardiac myocytes by hypoxia. 1998 Mol. Cell. Biochem. pmid:9546643
Harada N et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. 2007 Mol. Cell. Biol. pmid:17210641
Zhang M et al. The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. 2013 Mol. Cell. Biol. pmid:24081331
Janovská A et al. AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity. 2008 Mol. Cell. Endocrinol. pmid:18255222
Natarajan S et al. Crystal structure of malonyl CoA-Acyl carrier protein transacylase from Xanthomanous oryzae pv. oryzae and its proposed binding with ACP. 2012 Mol. Cells pmid:22134719
Wolfgang MJ and Lane MD Hypothalamic malonyl-coenzyme A and the control of energy balance. 2008 Mol. Endocrinol. pmid:18356287
Schink B An alternative to the glyoxylate shunt. 2009 Mol. Microbiol. pmid:19682245
Schujman GE et al. A malonyl-CoA-dependent switch in the bacterial response to a dysfunction of lipid metabolism. 2008 Mol. Microbiol. pmid:18384517
Downs SM et al. Fatty acid oxidation and meiotic resumption in mouse oocytes. 2009 Mol. Reprod. Dev. pmid:19455666
Koeppen AH et al. Fatty acid biosynthesis in Wallerian degeneration of rat sciatic nerve. 1979 Sep-Oct Muscle Nerve pmid:40126
Vladutiu GD et al. Carnitine palmitoyl transferase deficiency in malignant hyperthermia. 1993 Muscle Nerve pmid:8515756
Ruderman N and Prentki M AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. 2004 Nat Rev Drug Discov pmid:15060529
Cheng L et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. 2004 Nat. Med. pmid:15475963
Wortman MD et al. C75 inhibits food intake by increasing CNS glucose metabolism. 2003 Nat. Med. pmid:12724740
Funa N et al. A new pathway for polyketide synthesis in microorganisms. 1999 Nature pmid:10476972
Knobloch M et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. 2013 Nature pmid:23201681
Trevisan CP et al. Myoglobinuria and carnitine palmityltransferase (CPT) deficiency: studies with malonyl-CoA suggest absence of only CPT-II. 1984 Neurology pmid:6538275
Neumann-Schmidt S and Zierz S Carnitine acyltransferases in normal human skeletal muscle and in muscle of patients with carnitine palmitoyltransferase deficiency. 1991 Neuromuscul. Disord. pmid:1822803
Sucajtys-Szulc E et al. Differential effect of prolonged food restriction and fasting on hypothalamic malonyl-CoA concentration and expression of orexigenic and anorexigenic neuropeptides genes in rats. 2010 Neuropeptides pmid:20004973
Sargueil F et al. High metabolism and subsequent elongation of 3-hydroxyeicosanoyl-CoA in very-long-chain fatty acid deficient PNS of Trembler mice. 1999 Neurosci. Lett. pmid:10505644
Yorifuji S [Mitochondrial carnitine palmitoyltransferase]. 2002 Nippon Rinsho pmid:12014003
Ishihara H and Oka Y [Mitochondria as the signal generator in the metabolism-secretion coupling in pancreatic beta cells]. 2002 Nippon Rinsho pmid:12430299
Noda M [Mechanism of glucose-induced insulin secretion]. 2002 Nippon Rinsho pmid:12238044