Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
López-Viñas E et al. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. 2007 J. Biol. Chem. pmid:17452323
Liu Y et al. Discovery of acetyl-coenzyme A carboxylase 2 inhibitors: comparison of a fluorescence intensity-based phosphate assay and a fluorescence polarization-based ADP Assay for high-throughput screening. 2007 Assay Drug Dev Technol pmid:17477831
Wang X et al. Assay of the activity of malonyl-coenzyme A decarboxylase by gas chromatography-mass spectrometry. 2007 Anal. Biochem. pmid:17316539
Holloway GP et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. 2006 J. Physiol. (Lond.) pmid:16357012
Kraegen EW et al. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16234268
Bell JA et al. Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. 2006 Diabetologia pmid:16868746
Borthwick K et al. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. 2006 J. Biol. Chem. pmid:16908527
Wolf G The regulation of food intake by hypothalamic malonyl-coenzyme A: the MaloA hypothesis. 2006 Nutr. Rev. pmid:16958315
Schujman GE et al. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. 2006 EMBO J. pmid:16932747
Tang GL et al. Polyketide chain skipping mechanism in the biosynthesis of the hybrid nonribosomal peptide-polyketide antitumor antibiotic leinamycin in Streptomyces atroolivaceus S-140. 2006 J. Nat. Prod. pmid:16562841
Lindén D et al. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. 2006 FASEB J. pmid:16507761
Collier CA et al. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16478780
Kuhl JE et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16434556
Cheng JF et al. Synthesis and structure-activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors. 2006 J. Med. Chem. pmid:16509570
Wolfgang MJ and Lane MD The role of hypothalamic malonyl-CoA in energy homeostasis. 2006 J. Biol. Chem. pmid:17018521
Cha SH et al. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:17030788
Bandyopadhyay GK et al. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. 2006 Diabetes pmid:16873691
Pender C et al. Expression of genes regulating malonyl-CoA in human skeletal muscle. 2006 J. Cell. Biochem. pmid:16721829
Wolfgang MJ and Lane MD Control of energy homeostasis: role of enzymes and intermediates of fatty acid metabolism in the central nervous system. 2006 Annu. Rev. Nutr. pmid:16704352
Onay-Besikci A and Sambandam N Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. 2006 Can. J. Physiol. Pharmacol. pmid:17218986