Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Cha SH et al. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:16203972
Abu-Elheiga L et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:16103361
Brusselmans K et al. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. 2005 Cancer Res. pmid:16061653
Neschen S et al. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. 2005 Cell Metab. pmid:16054099
Mizuarai S et al. Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. 2005 J. Biol. Chem. pmid:16027120
Lelliott CJ et al. Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. 2005 FASEB J. pmid:15985534
Assifi MM et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15956049
Mingrone G et al. Leptin pulsatility in formerly obese women. 2005 FASEB J. pmid:15955844
Dowell P et al. Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. 2005 Annu. Rev. Biochem. pmid:15952896
Kamoun P Valine is a precursor of propionyl-CoA. 1992 Trends Biochem. Sci. pmid:1595124
Woldegiorgis G et al. Restoration of malonyl-CoA sensitivity of soluble rat liver mitochondria carnitine palmitoyltransferase by reconstitution with a partially purified malonyl-CoA binding protein. 1992 Arch. Biochem. Biophys. pmid:1586164
Kikuchi S et al. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. 1992 Arch. Biochem. Biophys. pmid:1586161
Giordano A et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. 2005 Cell Death Differ. pmid:15846373
King KL et al. Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power. 2005 Am. J. Physiol. Heart Circ. Physiol. pmid:15821035
Griffin MJ and Sul HS Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c. 2004 IUBMB Life pmid:15814457
Götz T and Böger P The very-long-chain fatty acid synthase is inhibited by chloroacetamides. 2004 Jul-Aug Z. Naturforsch., C, J. Biosci. pmid:15813378
Planavila A et al. Increased Akt protein expression is associated with decreased ceramide content in skeletal muscle of troglitazone-treated mice. 2005 Biochem. Pharmacol. pmid:15794940
Oikawa S [Is hyperfattyacidemia related to the occurrence of diabetes?]. 2005 Nippon Rinsho pmid:15779455
Miyahisa I et al. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. 2005 Appl. Microbiol. Biotechnol. pmid:15770480
Rendina AR and Cheng D Characterization of the inactivation of rat fatty acid synthase by C75: inhibition of partial reactions and protection by substrates. 2005 Biochem. J. pmid:15715522
Funa N et al. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. 2005 J. Biol. Chem. pmid:15701630
Abe I et al. A plant type III polyketide synthase that produces pentaketide chromone. 2005 J. Am. Chem. Soc. pmid:15686354
Herrero L et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. 2005 Diabetes pmid:15677504
Oh W et al. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15677334
Koves TR et al. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. 2005 Am. J. Physiol., Cell Physiol. pmid:15647392
Taylor EB et al. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15644453
Jeong JC et al. Exploiting the reaction flexibility of a type III polyketide synthase through in vitro pathway manipulation. 2005 J. Am. Chem. Soc. pmid:15631450
Bian F et al. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. 2005 J. Biol. Chem. pmid:15611129
Dulloo AG et al. Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. 2004 Int. J. Obes. Relat. Metab. Disord. pmid:15592483
Foster DW The role of the carnitine system in human metabolism. 2004 Ann. N. Y. Acad. Sci. pmid:15590999
Shirai Y et al. Metabolic regulation of leptin production in adipocytes: a role of fatty acid synthesis intermediates. 2004 J. Nutr. Biochem. pmid:15590268
Liu H et al. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. 2005 J. Biol. Chem. pmid:15579906
Yu X et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. 2004 Diabetologia pmid:15578153
Raney MA et al. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15547141
Nicot C et al. C75 activates malonyl-CoA sensitive and insensitive components of the CPT system. 2004 Biochem. Biophys. Res. Commun. pmid:15541339
Oguro S et al. Probing biosynthesis of plant polyketides with synthetic N-acetylcysteamine thioesters. 2004 Biochem. Biophys. Res. Commun. pmid:15530429
Peluso G et al. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells. 2005 J. Cell. Physiol. pmid:15515015
Zhang YQ et al. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. 2004 Genetics pmid:15514053
Faye A et al. Demonstration of N- and C-terminal domain intramolecular interactions in rat liver carnitine palmitoyltransferase 1 that determine its degree of malonyl-CoA sensitivity. 2005 Biochem. J. pmid:15498023
Buemann B and Astrup AV [Lipogenesis: does it have a relevance in the obesity research?]. 2004 Ugeskr. Laeg. pmid:15487518
Cheng L et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. 2004 Nat. Med. pmid:15475963
Relat J et al. Pig muscle carnitine palmitoyltransferase I (CPTI beta), with low Km for carnitine and low sensitivity to malonyl-CoA inhibition, has kinetic characteristics similar to those of the rat liver (CPTI alpha) enzyme. 2004 Biochemistry pmid:15449958
Sütfeld R et al. Characterization, development and localization of "flavanone synthase" in tulip anthers. 1978 Nov-Dec Z. Naturforsch., C, Biosci. pmid:154221
Roepstorff C et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15383373
Yoshida S and Bourre JM Condensation activity for polyunsaturated fatty acids with malonyl-CoA in rat brain microsomes. Characteristics and developmental change. 1992 Biochim. Biophys. Acta pmid:1536871
Juárez P et al. A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone. 1992 Arch. Biochem. Biophys. pmid:1536569
Yang N et al. C75 [4-methylene-2-octyl-5-oxo-tetrahydro-furan-3-carboxylic acid] activates carnitine palmitoyltransferase-1 in isolated mitochondria and intact cells without displacement of bound malonyl CoA. 2005 J. Pharmacol. Exp. Ther. pmid:15356215
Gande R et al. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. 2004 J. Biol. Chem. pmid:15308633
A'Bháird NN and Ramsay RR Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase. 1992 Biochem. J. pmid:1530596
Onay-Besikci A et al. gAd-globular head domain of adiponectin increases fatty acid oxidation in newborn rabbit hearts. 2004 J. Biol. Chem. pmid:15269215