Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Weight Gain D015430 101 associated lipids
Hypoglycemia D007003 13 associated lipids
Alcoholism D000437 27 associated lipids
Starvation D013217 47 associated lipids
Hypertension D006973 115 associated lipids
Cytomegalovirus Infections D003586 7 associated lipids
Protein-Energy Malnutrition D011502 9 associated lipids
Cachexia D002100 21 associated lipids
Hyperinsulinism D006946 27 associated lipids
Placental Insufficiency D010927 6 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Nogalska A and Swierczyński J [Malonyl-coenzyme A as a signaling molecule in appetite regulation]. 2001 Postepy Biochem. pmid:11757318
McGarry JD Travels with carnitine palmitoyltransferase I: from liver to germ cell with stops in between. 2001 Biochem. Soc. Trans. pmid:11356162
Martini WZ et al. Alteration of hepatic fatty acid metabolism after burn injury in pigs. 2001 Nov-Dec JPEN J Parenter Enteral Nutr pmid:11688934
Campbell FM et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. 2002 J. Biol. Chem. pmid:11734553
Ido Y et al. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. 2002 Diabetes pmid:11756336
Richards JG et al. Lipid oxidation fuels recovery from exhaustive exercise in white muscle of rainbow trout. 2002 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:11742827
Nicot C et al. Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity. 2002 J. Biol. Chem. pmid:11790778
Morillas M et al. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain. 2002 J. Biol. Chem. pmid:11790793
Florova G et al. Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity. 2002 Biochemistry pmid:12173933
Zheng X et al. Substrate binding induces a cooperative conformational change in the 12S subunit of transcarboxylase: Raman crystallographic evidence. 2002 Biochemistry pmid:12196011
Witkowski A et al. Mechanism of the beta-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. 2002 Biochemistry pmid:12196027
Ghanevati M and Jaworski JG Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. 2002 Eur. J. Biochem. pmid:12135493
Hügler M et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. 2002 J. Bacteriol. pmid:11948153
Kim JY et al. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11934665
Yorifuji S [Mitochondrial carnitine palmitoyltransferase]. 2002 Nippon Rinsho pmid:12014003
Salles J et al. Fatty acid synthase expression during peripheral nervous system myelination. 2002 Brain Res. Mol. Brain Res. pmid:12007831
Jez JM et al. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:11959984
Ukropec J et al. An increase in peroxisomal fatty acid oxidation is not sufficient to prevent tissue lipid accumulation in hHTg rats. 2002 Ann. N. Y. Acad. Sci. pmid:12079837
Yee AJ and Turcotte LP Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:12067845
Atkinson LL et al. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. 2002 J. Biol. Chem. pmid:12058043
Thupari JN et al. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12060712
Richards JG et al. Substrate utilization during graded aerobic exercise in rainbow trout. 2002 J. Exp. Biol. pmid:12089210
Hirsch J The search for new ways to treat obesity. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12093927
Verhoeyen ME et al. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. 2002 J. Exp. Bot. pmid:12324533
Pan Y et al. The extreme C terminus of rat liver carnitine palmitoyltransferase I is not involved in malonyl-CoA sensitivity but in initial protein folding. 2002 J. Biol. Chem. pmid:12351641
Schwarzer D et al. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12384573
Laviano A et al. Energy expenditure and treating obesity. 2002 Science pmid:12387285
Ishihara H and Oka Y [Mitochondria as the signal generator in the metabolism-secretion coupling in pancreatic beta cells]. 2002 Nippon Rinsho pmid:12430299
Poirier M et al. Probing the link between citrate and malonyl-CoA in perfused rat hearts. 2002 Am. J. Physiol. Heart Circ. Physiol. pmid:12234788
Noda M [Mechanism of glucose-induced insulin secretion]. 2002 Nippon Rinsho pmid:12238044
Dyck JR and Lopaschuk GD Malonyl CoA control of fatty acid oxidation in the ischemic heart. 2002 J. Mol. Cell. Cardiol. pmid:12392882
Sorensen A et al. Localization of messenger RNAs encoding enzymes associated with malonyl-CoA metabolism in mouse brain. 2002 Brain Res. Gene Expr. Patterns pmid:12638127
Jensen MD Fatty acid oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464664
Rasmussen BB et al. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. 2002 J. Clin. Invest. pmid:12464674
Tomas E et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12456889
Prentki M et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. 2002 Diabetes pmid:12475783
Park SH et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. 2002 J. Appl. Physiol. pmid:12433937
Takahashi H et al. Inhibition of very-long-chain fatty acid formation by indanofan, 2-[2-(3-chlorophenyl)oxiran-2-ylmethyl]-2-ethylindan-1,3-dione, and its relatives. 2002 Jan-Feb Z. Naturforsch., C, J. Biosci. pmid:11926546
Shafrir E et al. Regulation of muscle malonyl-CoA levels in the nutritionally insulin-resistant desert gerbil, Psammomys obesus. 2002 May-Jun Diabetes Metab. Res. Rev. pmid:12112940
Rosa G et al. Decreased muscle acetyl-coenzyme A carboxylase 2 mRNA and insulin resistance in formerly obese subjects. 2003 Obes. Res. pmid:14627750
Gutières S et al. Cloning and tissue distribution of a carnitine palmitoyltransferase I gene in rainbow trout (Oncorhynchus mykiss). 2003 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:12781981
BÃ¥venholm PN et al. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme A regulation. 2003 J. Clin. Endocrinol. Metab. pmid:12519834
Morillas M et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. 2003 J. Biol. Chem. pmid:12499375
Zhang L et al. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyltransferase and acyl carrier protein. 2003 J. Biol. Chem. pmid:12882974
Kiens B and Roepstorff C Utilization of long-chain fatty acids in human skeletal muscle during exercise. 2003 Acta Physiol. Scand. pmid:12864744
Ruderman NB et al. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. 2003 Acta Physiol. Scand. pmid:12864749
Dawe JH et al. A template search reveals mechanistic similarities and differences in beta-ketoacyl synthases (KAS) and related enzymes. 2003 Proteins pmid:12866053
Molnos J et al. A continuous coupled enzyme assay for bacterial malonyl-CoA:acyl carrier protein transacylase (FabD). 2003 Anal. Biochem. pmid:12842120
Harwood HJ et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. 2003 J. Biol. Chem. pmid:12842871
Weiss DR and Glickman JF Characterization of fatty acid synthase activity using scintillation proximity. 2003 Assay Drug Dev Technol pmid:15090142