Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Gain D015430 101 associated lipids
Hypertension D006973 115 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Natarajan S et al. Crystal structure of malonyl CoA-Acyl carrier protein transacylase from Xanthomanous oryzae pv. oryzae and its proposed binding with ACP. 2012 Mol. Cells pmid:22134719
Smith AC and Cronan JE Dimerization of the bacterial biotin carboxylase subunit is required for acetyl coenzyme A carboxylase activity in vivo. 2012 J. Bacteriol. pmid:22037404
Rathnasingh C et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. 2012 J. Biotechnol. pmid:21723339
Glund S et al. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice. 2012 Diabetologia pmid:22532389
Guo H et al. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. 2012 Lipids Health Dis pmid:22243683
Cherbuy C et al. Oleate metabolism in pig enterocytes is characterized by an increased oxidation rate in the presence of a high esterification rate within two days after birth. 2012 J. Nutr. pmid:22223579
Ellis JM and Wolfgang MJ A genetically encoded metabolite sensor for malonyl-CoA. 2012 Chem. Biol. pmid:23102226
Jeya M et al. A type III polyketide synthase from Rhizobium etli condenses malonyl CoAs to a heptaketide pyrone with unusually high catalytic efficiency. 2012 Mol Biosyst pmid:23059854
Morash AJ and McClelland GB Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation. 2011 Nov-Dec Physiol. Biochem. Zool. pmid:22030855
Chen Q et al. Fatty acid synthase inhibitors separated from oiltea camellia by high-speed counter-current chromatography. 2011 Jun-Jul J. Food Sci. pmid:22417422
Xu P et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. 2011 Metab. Eng. pmid:21763447
Kudej RK et al. Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia. 2011 Cardiovasc. Res. pmid:21835931
Jia Y and Zhong JJ Enhanced production of ansamitocin P-3 by addition of Mg2+ in fermentation of Actinosynnema pretiosum. 2011 Bioresour. Technol. pmid:21907573
Serviddio G et al. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I) impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet. 2011 PLoS ONE pmid:21909411
Keung W et al. Chronic central leptin decreases food intake and improves glucose tolerance in diet-induced obese mice independent of hypothalamic malonyl CoA levels and skeletal muscle insulin sensitivity. 2011 Endocrinology pmid:21914780
Hammerbacher A et al. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. 2011 Plant Physiol. pmid:21865488
Alves J et al. Cloning, expression, and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases. 2011 Anal. Biochem. pmid:21704013
Gilibili RR et al. Development and validation of a highly sensitive LC-MS/MS method for simultaneous quantitation of acetyl-CoA and malonyl-CoA in animal tissues. 2011 Biomed. Chromatogr. pmid:21381064
Reamy AA and Wolfgang MJ Carnitine palmitoyltransferase-1c gain-of-function in the brain results in postnatal microencephaly. 2011 J. Neurochem. pmid:21592121
Gao S et al. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. 2011 Proc. Natl. Acad. Sci. U.S.A. pmid:21593415