Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Protein-Energy Malnutrition D011502 9 associated lipids
Starvation D013217 47 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Myocardial Stunning D017682 10 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Suo Z et al. Purification, priming, and catalytic acylation of carrier protein domains in the polyketide synthase and nonribosomal peptidyl synthetase modules of the HMWP1 subunit of yersiniabactin synthetase. 2001 Proc. Natl. Acad. Sci. U.S.A. pmid:11134531
Kuhajda FP et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. 1994 Proc. Natl. Acad. Sci. U.S.A. pmid:8022791
Cha SH et al. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:17030788
Murthy MS and Pande SV Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. 1987 Proc. Natl. Acad. Sci. U.S.A. pmid:3540964
Zammit VA Regulation of hepatic fatty acid oxidation and ketogenesis. 1983 Proc Nutr Soc pmid:6351086
Saez G et al. Gene expression and protein content in relation to intramuscular fat content in Muscovy and Pekin ducks. 2009 Poult. Sci. pmid:19834090
Nogalska A and Swierczyński J [Malonyl-coenzyme A as a signaling molecule in appetite regulation]. 2001 Postepy Biochem. pmid:11757318
Koyuncu E et al. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. 2013 PLoS Pathog. pmid:23696731
Albanesi D et al. Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus. 2013 PLoS Pathog. pmid:23300457
Serviddio G et al. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I) impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet. 2011 PLoS ONE pmid:21909411
Liu C et al. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. 2013 PLoS ONE pmid:24073271
Moore RG et al. Efficacy of a non-hypercalcemic vitamin-D2 derived anti-cancer agent (MT19c) and inhibition of fatty acid synthesis in an ovarian cancer xenograft model. 2012 PLoS ONE pmid:22509304
Kim DH et al. Molecular characterization of flavonoid malonyltransferase from Oryza sativa. 2009 Nov-Dec Plant Physiol. Biochem. pmid:19733090
Raharjo TJ et al. Cloning and over-expression of a cDNA encoding a polyketide synthase from Cannabis sativa. 2004 Plant Physiol. Biochem. pmid:15120113
Focke M et al. Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by a mitochondrial-localized acetyl-coenzyme A carboxylase. 2003 Plant Physiol. pmid:12972648
Hammerbacher A et al. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. 2011 Plant Physiol. pmid:21865488
Gulliver BS and Slabas AR Acetoacyl-acyl carrier protein synthase from avocado: its purification, characterisation and clear resolution from acetyl CoA:ACP transacylase. 1994 Plant Mol. Biol. pmid:8018868
Bertoni G A key step in phlorotannin biosynthesis revealed. 2013 Plant Cell pmid:23995082
Eckermann C et al. Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases. 2003 Phytochemistry pmid:14568070
Morash AJ and McClelland GB Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation. 2011 Nov-Dec Physiol. Biochem. Zool. pmid:22030855
Gao S et al. Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. 2013 Physiol. Behav. pmid:23680429
Gao S et al. Hypothalamic malonyl-CoA and the control of food intake. 2013 Physiol. Behav. pmid:23988346
Cahová M et al. Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. 2007 Physiol Res pmid:16497094
Szkudelski T Intracellular mediators in regulation of leptin secretion from adipocytes. 2007 Physiol Res pmid:17184148
Lopaschuk GD et al. Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite. 2010 Pharmacol. Rev. pmid:20392806
Hamdan M et al. Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176. 2001 Pharmacol. Res. pmid:11516258
Yatscoff MA et al. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart. 2008 Pediatr. Res. pmid:18614968
Kharel MK et al. Enzymatic total synthesis of rabelomycin, an angucycline group antibiotic. 2010 Org. Lett. pmid:20486694
Celik A et al. Decrease in malonyl-CoA and its background metabolic alterations in murine model of cancer cachexia. 2009 Oncol. Rep. pmid:19288015
Fritz V et al. Metabolic intervention on lipid synthesis converging pathways abrogates prostate cancer growth. 2013 Oncogene pmid:23208508
Ruderman NB and Saha AK Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A. 2006 Obesity (Silver Spring) pmid:16642960
Rosa G et al. Decreased muscle acetyl-coenzyme A carboxylase 2 mRNA and insulin resistance in formerly obese subjects. 2003 Obes. Res. pmid:14627750
Activation and polymerization by citrate of the biotin-enzyme acetyl-CoA carboxylase. 1984 Nutr. Rev. pmid:6147803
Wolf G The regulation of food intake by hypothalamic malonyl-coenzyme A: the MaloA hypothesis. 2006 Nutr. Rev. pmid:16958315
The regulation of fatty acid synthesis and oxidation by malonyl-CoA and carnitine. 1980 Nutr. Rev. pmid:7360412
Hormonal regulation of hepatic ketogenesis--pivotal role of malonyl-CoA. 1979 Nutr. Rev. pmid:481838
Oikawa S [Is hyperfattyacidemia related to the occurrence of diabetes?]. 2005 Nippon Rinsho pmid:15779455
Yorifuji S [Mitochondrial carnitine palmitoyltransferase]. 2002 Nippon Rinsho pmid:12014003
Ishihara H and Oka Y [Mitochondria as the signal generator in the metabolism-secretion coupling in pancreatic beta cells]. 2002 Nippon Rinsho pmid:12430299
Noda M [Mechanism of glucose-induced insulin secretion]. 2002 Nippon Rinsho pmid:12238044
Sargueil F et al. High metabolism and subsequent elongation of 3-hydroxyeicosanoyl-CoA in very-long-chain fatty acid deficient PNS of Trembler mice. 1999 Neurosci. Lett. pmid:10505644
Sucajtys-Szulc E et al. Differential effect of prolonged food restriction and fasting on hypothalamic malonyl-CoA concentration and expression of orexigenic and anorexigenic neuropeptides genes in rats. 2010 Neuropeptides pmid:20004973
Neumann-Schmidt S and Zierz S Carnitine acyltransferases in normal human skeletal muscle and in muscle of patients with carnitine palmitoyltransferase deficiency. 1991 Neuromuscul. Disord. pmid:1822803
Trevisan CP et al. Myoglobinuria and carnitine palmityltransferase (CPT) deficiency: studies with malonyl-CoA suggest absence of only CPT-II. 1984 Neurology pmid:6538275
Funa N et al. A new pathway for polyketide synthesis in microorganisms. 1999 Nature pmid:10476972
Knobloch M et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. 2013 Nature pmid:23201681
Cheng L et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. 2004 Nat. Med. pmid:15475963
Wortman MD et al. C75 inhibits food intake by increasing CNS glucose metabolism. 2003 Nat. Med. pmid:12724740
Ruderman N and Prentki M AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. 2004 Nat Rev Drug Discov pmid:15060529
Vladutiu GD et al. Carnitine palmitoyl transferase deficiency in malignant hyperthermia. 1993 Muscle Nerve pmid:8515756