Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Elayan IM and Winder WW Effect of glucose infusion on muscle malonyl-CoA during exercise. 1991 J. Appl. Physiol. pmid:2055826
Duan C and Winder WW Control of malonyl-CoA by glucose and insulin in perfused skeletal muscle. 1993 J. Appl. Physiol. pmid:8335589
Winder WW et al. Effect of adrenodemedullation on decline in muscle malonyl-CoA during exercise. 1993 J. Appl. Physiol. pmid:8335590
Winder WW et al. Muscle malonyl-CoA decreases during exercise. 1989 J. Appl. Physiol. pmid:2558099
Park SH et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. 2002 J. Appl. Physiol. pmid:12433937
Maclean PS and Winder WW Caffeine decreases malonyl-CoA in isolated perfused skeletal muscle of rats. 1995 J. Appl. Physiol. pmid:7615461
Duan C and Winder WW Nerve stimulation decreases malonyl-CoA in skeletal muscle. 1992 J. Appl. Physiol. pmid:1349012
Hutber CA et al. Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise. 1997 J. Appl. Physiol. pmid:9390963
McCormack JG et al. Effects of ranolazine on oxidative substrate preference in epitrochlearis muscle. 1996 J. Appl. Physiol. pmid:8872662
Kimber NE et al. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability. 2013 J. Appl. Physiol. pmid:23519231
Bao W et al. The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. 1999 J. Bacteriol. pmid:10419974
Takagi M et al. Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. 2010 J. Bacteriol. pmid:19854913
Smith AC and Cronan JE Dimerization of the bacterial biotin carboxylase subunit is required for acetyl coenzyme A carboxylase activity in vivo. 2012 J. Bacteriol. pmid:22037404
Menendez C et al. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. 1999 J. Bacteriol. pmid:9973333
Furukawa H et al. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. 1993 J. Bacteriol. pmid:8509326
Hügler M et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. 2002 J. Bacteriol. pmid:11948153
Thompson TE and Zeikus JG Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway. 1988 J. Bacteriol. pmid:3410821
Jackowski S and Rock CO Consequences of reduced intracellular coenzyme A content in Escherichia coli. 1986 J. Bacteriol. pmid:3519582
Revill WP et al. Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant. 1995 J. Bacteriol. pmid:7608065
Kikuchi S and Kusaka T New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. 1982 J. Biochem. pmid:7142122
Kawaguchi A et al. Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes. 1980 J. Biochem. pmid:7419496
Bortolami S et al. Long chain fatty acyl-CoA modulation of H(2)O (2) release at mitochondrial complex I. 2008 J. Bioenerg. Biomembr. pmid:18214656
McGarry JD et al. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. 1978 J. Biol. Chem. pmid:711752
Antinozzi PA et al. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. 1998 J. Biol. Chem. pmid:9632669
Velasco G et al. Malonyl-CoA-independent acute control of hepatic carnitine palmitoyltransferase I activity. Role of Ca2+/calmodulin-dependent protein kinase II and cytoskeletal components. 1998 J. Biol. Chem. pmid:9705278
Kim YS and Kolattukudy PE Stereospecificity of malonyl-CoA decarboxylase, acetyl-CoA carboxylase, and fatty acid synthetase from the uropygial gland of goose. 1980 J. Biol. Chem. pmid:6101330
Cook GA The hypoglycemic sulfonylureas glyburide and tolbutamide inhibit fatty acid oxidation by inhibiting carnitine palmitoyltransferase. 1987 J. Biol. Chem. pmid:3104327
Saddik M et al. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. 1993 J. Biol. Chem. pmid:7902355
Guay C et al. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. 2007 J. Biol. Chem. pmid:17928289
Li S et al. Molecular analysis of the role of tyrosine 224 in the active site of Streptomyces coelicolor RppA, a bacterial type III polyketide synthase. 2007 J. Biol. Chem. pmid:17331946
Campbell FM et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. 2002 J. Biol. Chem. pmid:11734553
Morillas M et al. Structural model of the catalytic core of carnitine palmitoyltransferase I and carnitine octanoyltransferase (COT): mutation of CPT I histidine 473 and alanine 381 and COT alanine 238 impairs the catalytic activity. 2001 J. Biol. Chem. pmid:11553629
López-Viñas E et al. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. 2007 J. Biol. Chem. pmid:17452323
Esser V et al. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. 1993 J. Biol. Chem. pmid:8449948
Thampy KG Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. 1989 J. Biol. Chem. pmid:2572585
Bian F et al. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. 2005 J. Biol. Chem. pmid:15611129
Liu H et al. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. 2005 J. Biol. Chem. pmid:15579906
Atkinson LL et al. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. 2002 J. Biol. Chem. pmid:12058043
Lopaschuk GD et al. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. 1994 J. Biol. Chem. pmid:7929291
Brown NF et al. Expression of a cDNA for rat liver carnitine palmitoyltransferase I in yeast establishes that catalytic activity and malonyl-CoA sensitivity reside in a single polypeptide. 1994 J. Biol. Chem. pmid:7929364
Mizuarai S et al. Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. 2005 J. Biol. Chem. pmid:16027120
Decaux JF et al. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration. 1988 J. Biol. Chem. pmid:2893801
Funa N et al. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. 2005 J. Biol. Chem. pmid:15701630
Treber M et al. Identification by mutagenesis of conserved arginine and glutamate residues in the C-terminal domain of rat liver carnitine palmitoyltransferase I that are important for catalytic activity and malonyl-CoA sensitivity. 2003 J. Biol. Chem. pmid:12540837
Mulder H et al. Overexpression of a modified human malonyl-CoA decarboxylase blocks the glucose-induced increase in malonyl-CoA level but has no impact on insulin secretion in INS-1-derived (832/13) beta-cells. 2001 J. Biol. Chem. pmid:11113153
Roduit R et al. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta -cell. 2000 J. Biol. Chem. pmid:10967113
Jackson VN et al. Identification of positive and negative determinants of malonyl-CoA sensitivity and carnitine affinity within the amino termini of rat liver- and muscle-type carnitine palmitoyltransferase I. 2000 J. Biol. Chem. pmid:10969089
Cook GA Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. 1984 J. Biol. Chem. pmid:6480597
Soulié JM et al. Transient kinetic studies of fatty acid synthetase. A kinetic self-editing mechanism for the loading of acetyl and malonyl residues and the role of coenzyme A. 1984 J. Biol. Chem. pmid:6706923
Rangan VS and Smith S Alteration of the substrate specificity of the malonyl-CoA/acetyl-CoA:acyl carrier protein S-acyltransferase domain of the multifunctional fatty acid synthase by mutation of a single arginine residue. 1997 J. Biol. Chem. pmid:9115261