Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Cherbuy C et al. Oleate metabolism in pig enterocytes is characterized by an increased oxidation rate in the presence of a high esterification rate within two days after birth. 2012 J. Nutr. pmid:22223579
Tokutake Y et al. Effect of diet composition on coenzyme A and its thioester pools in various rat tissues. 2012 Biochem. Biophys. Res. Commun. pmid:22713453
Jung SY et al. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells. 2012 J. Cell. Biochem. pmid:22786746
Kolwicz SC et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. 2012 Circ. Res. pmid:22730442
Iio W et al. Anorexic behavior and elevation of hypothalamic malonyl-CoA in socially defeated rats. 2012 Biochem. Biophys. Res. Commun. pmid:22503976
Jensen K et al. Polyketide proofreading by an acyltransferase-like enzyme. 2012 Chem. Biol. pmid:22444588
Ussher JR et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. 2012 Cardiovasc. Res. pmid:22436846
Moore RG et al. Efficacy of a non-hypercalcemic vitamin-D2 derived anti-cancer agent (MT19c) and inhibition of fatty acid synthesis in an ovarian cancer xenograft model. 2012 PLoS ONE pmid:22509304
Morash AJ and McClelland GB Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation. 2011 Nov-Dec Physiol. Biochem. Zool. pmid:22030855
Chen Q et al. Fatty acid synthase inhibitors separated from oiltea camellia by high-speed counter-current chromatography. 2011 Jun-Jul J. Food Sci. pmid:22417422
Xu P et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. 2011 Metab. Eng. pmid:21763447
Kudej RK et al. Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia. 2011 Cardiovasc. Res. pmid:21835931
Jia Y and Zhong JJ Enhanced production of ansamitocin P-3 by addition of Mg2+ in fermentation of Actinosynnema pretiosum. 2011 Bioresour. Technol. pmid:21907573
Serviddio G et al. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I) impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet. 2011 PLoS ONE pmid:21909411
Keung W et al. Chronic central leptin decreases food intake and improves glucose tolerance in diet-induced obese mice independent of hypothalamic malonyl CoA levels and skeletal muscle insulin sensitivity. 2011 Endocrinology pmid:21914780
Jenei ZA et al. Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. 2011 FASEB J. pmid:21917985
Hammerbacher A et al. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. 2011 Plant Physiol. pmid:21865488
Alves J et al. Cloning, expression, and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases. 2011 Anal. Biochem. pmid:21704013
Gilibili RR et al. Development and validation of a highly sensitive LC-MS/MS method for simultaneous quantitation of acetyl-CoA and malonyl-CoA in animal tissues. 2011 Biomed. Chromatogr. pmid:21381064
Gao S et al. Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a. 2011 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:21508288