Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Li S et al. Molecular analysis of the role of tyrosine 224 in the active site of Streptomyces coelicolor RppA, a bacterial type III polyketide synthase. 2007 J. Biol. Chem. pmid:17331946
Wang X et al. Assay of the activity of malonyl-coenzyme A decarboxylase by gas chromatography-mass spectrometry. 2007 Anal. Biochem. pmid:17316539
López M et al. Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. 2007 Bioessays pmid:17295284
Badaoui B et al. Goat acetyl-coenzyme A carboxylase alpha: molecular characterization, polymorphism, and association with milk traits. 2007 J. Dairy Sci. pmid:17235183
Wallace DM et al. Novel trifluoroacetophenone derivatives as malonyl-CoA decarboxylase inhibitors. 2007 Bioorg. Med. Chem. Lett. pmid:17234415
Springob K et al. A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. 2007 FEBS J. pmid:17229146
Onay-Besikci A and Sambandam N Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. 2006 Can. J. Physiol. Pharmacol. pmid:17218986
Harada N et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. 2007 Mol. Cell. Biol. pmid:17210641
Szkudelski T Intracellular mediators in regulation of leptin secretion from adipocytes. 2007 Physiol Res pmid:17184148
Guo W et al. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17148751
Nolan CJ et al. Fatty acid signaling in the beta-cell and insulin secretion. 2006 Diabetes pmid:17130640
Folmes CD and Lopaschuk GD Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. 2007 Cardiovasc. Res. pmid:17126822
Hayashi O and Satoh K Determination of acetyl-CoA and malonyl-CoA in germinating rice seeds using the LC-MS/MS technique. 2006 Biosci. Biotechnol. Biochem. pmid:17090944
Sebastián D et al. CPT I overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17062841
Cha SH et al. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:17030788
Wolfgang MJ and Lane MD The role of hypothalamic malonyl-CoA in energy homeostasis. 2006 J. Biol. Chem. pmid:17018521
Wolf G The regulation of food intake by hypothalamic malonyl-coenzyme A: the MaloA hypothesis. 2006 Nutr. Rev. pmid:16958315
Saha AK et al. AMPK regulation of the growth of cultured human keratinocytes. 2006 Biochem. Biophys. Res. Commun. pmid:16949049
Schujman GE et al. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. 2006 EMBO J. pmid:16932747
Cardella F Insulin therapy during diabetic ketoacidosis in children. 2005 Acta Biomed pmid:16915797
Borthwick K et al. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. 2006 J. Biol. Chem. pmid:16908527
Bandyopadhyay GK et al. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. 2006 Diabetes pmid:16873691
Bell JA et al. Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. 2006 Diabetologia pmid:16868746
Cheng D et al. Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes. 2007 Protein Expr. Purif. pmid:16854592
Neels JG and Olefsky JM Cell signaling. A new way to burn fat. 2006 Science pmid:16794069
Gu YG et al. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. 2006 J. Med. Chem. pmid:16789734
Trumble GE et al. Evidence of a biotin dependent acetyl-coenzyme A carboxylase in rat muscle. 1991 Life Sci. pmid:1675755
Pender C et al. Expression of genes regulating malonyl-CoA in human skeletal muscle. 2006 J. Cell. Biochem. pmid:16721829
Mao J et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16717184
Wolfgang MJ and Lane MD Control of energy homeostasis: role of enzymes and intermediates of fatty acid metabolism in the central nervous system. 2006 Annu. Rev. Nutr. pmid:16704352
Oefner C et al. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. 2006 Acta Crystallogr. D Biol. Crystallogr. pmid:16699188
Wolfgang MJ et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16651524
López M et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. 2006 Diabetes pmid:16644689
Ruderman NB and Saha AK Metabolic syndrome: adenosine monophosphate-activated protein kinase and malonyl coenzyme A. 2006 Obesity (Silver Spring) pmid:16642960
Tang GL et al. Polyketide chain skipping mechanism in the biosynthesis of the hybrid nonribosomal peptide-polyketide antitumor antibiotic leinamycin in Streptomyces atroolivaceus S-140. 2006 J. Nat. Prod. pmid:16562841
Minkler PE et al. Quantification of malonyl-coenzyme A in tissue specimens by high-performance liquid chromatography/mass spectrometry. 2006 Anal. Biochem. pmid:16545769
Cheng JF et al. Synthesis and structure-activity relationship of small-molecule malonyl coenzyme A decarboxylase inhibitors. 2006 J. Med. Chem. pmid:16509570
Lindén D et al. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. 2006 FASEB J. pmid:16507761
Cahová M et al. Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. 2007 Physiol Res pmid:16497094
Collier CA et al. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16478780
Kuhl JE et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16434556
Murase T et al. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. 2006 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:16410398
Beha A et al. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16380389
Holloway GP et al. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. 2006 J. Physiol. (Lond.) pmid:16357012
Kelley DE Pulling in more fat. 2005 Cell Metab. pmid:16271525
McMillin JB et al. Evidence for malonyl-CoA-sensitive carnitine acyl-CoA transferase activity in sarcoplasmic reticulum of canine heart. 1992 J. Mol. Cell. Cardiol. pmid:1625348
Lane MD et al. Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. 2005 Biochem. Soc. Trans. pmid:16246046
Kraegen EW et al. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16234268
Hu Z et al. A role for hypothalamic malonyl-CoA in the control of food intake. 2005 J. Biol. Chem. pmid:16219771
Spiteller D et al. A method for trapping intermediates of polyketide biosynthesis with a nonhydrolyzable malonyl-coenzyme A analogue. 2005 Angew. Chem. Int. Ed. Engl. pmid:16208728