Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Medulloblastoma D008527 22 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Loss D015431 56 associated lipids
Myocardial Stunning D017682 10 associated lipids
Cleft Lip D002971 8 associated lipids
Mitochondrial Myopathies D017240 13 associated lipids
Mercury Poisoning D008630 4 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Elayan IM and Winder WW Effect of glucose infusion on muscle malonyl-CoA during exercise. 1991 J. Appl. Physiol. pmid:2055826
Duan C and Winder WW Control of malonyl-CoA by glucose and insulin in perfused skeletal muscle. 1993 J. Appl. Physiol. pmid:8335589
Winder WW et al. Effect of adrenodemedullation on decline in muscle malonyl-CoA during exercise. 1993 J. Appl. Physiol. pmid:8335590
Winder WW et al. Muscle malonyl-CoA decreases during exercise. 1989 J. Appl. Physiol. pmid:2558099
Park SH et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. 2002 J. Appl. Physiol. pmid:12433937
Odland LM et al. Effects of high fat provision on muscle PDH activation and malonyl-CoA content in moderate exercise. 2000 J. Appl. Physiol. pmid:11090589
Winder WW and Holmes BF Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. 2000 J. Appl. Physiol. pmid:11090599
Rasmussen BB et al. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase. 1998 J. Appl. Physiol. pmid:9804562
Merrill GF et al. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle. 1998 J. Appl. Physiol. pmid:9804598
Duan C and Winder WW Nerve stimulation decreases malonyl-CoA in skeletal muscle. 1992 J. Appl. Physiol. pmid:1349012
Bao W et al. The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. 1999 J. Bacteriol. pmid:10419974
Takagi M et al. Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. 2010 J. Bacteriol. pmid:19854913
Smith AC and Cronan JE Dimerization of the bacterial biotin carboxylase subunit is required for acetyl coenzyme A carboxylase activity in vivo. 2012 J. Bacteriol. pmid:22037404
Menendez C et al. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. 1999 J. Bacteriol. pmid:9973333
Furukawa H et al. Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. 1993 J. Bacteriol. pmid:8509326
Hügler M et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. 2002 J. Bacteriol. pmid:11948153
Thompson TE and Zeikus JG Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway. 1988 J. Bacteriol. pmid:3410821
Jackowski S and Rock CO Consequences of reduced intracellular coenzyme A content in Escherichia coli. 1986 J. Bacteriol. pmid:3519582
Revill WP et al. Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant. 1995 J. Bacteriol. pmid:7608065
Kikuchi S and Kusaka T New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. 1982 J. Biochem. pmid:7142122
Kawaguchi A et al. Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes. 1980 J. Biochem. pmid:7419496
Bortolami S et al. Long chain fatty acyl-CoA modulation of H(2)O (2) release at mitochondrial complex I. 2008 J. Bioenerg. Biomembr. pmid:18214656
Katsuyama Y et al. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. 2009 J. Biol. Chem. pmid:19258320
McGarry JD et al. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. 1978 J. Biol. Chem. pmid:711752
Goodwin GW et al. Regulation of energy metabolism of the heart during acute increase in heart work. 1998 J. Biol. Chem. pmid:9792661
Cohen I et al. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 mediates import into the outer mitochondrial membrane and is essential for activity and malonyl-CoA sensitivity. 1998 J. Biol. Chem. pmid:9792707
Rangan VS et al. Fatty acid synthase dimers containing catalytically active beta-ketoacyl synthase or malonyl/acetyltransferase domains in only one subunit can support fatty acid synthesis at the acyl carrier protein domains of both subunits. 1998 J. Biol. Chem. pmid:9857025
Beaty NB and Lane MD The polymerization of acetyl-CoA carboxylase. 1983 J. Biol. Chem. pmid:6138356
Antinozzi PA et al. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. 1998 J. Biol. Chem. pmid:9632669
Velasco G et al. Malonyl-CoA-independent acute control of hepatic carnitine palmitoyltransferase I activity. Role of Ca2+/calmodulin-dependent protein kinase II and cytoskeletal components. 1998 J. Biol. Chem. pmid:9705278
Hoppel CL et al. The malonyl-CoA-sensitive form of carnitine palmitoyltransferase is not localized exclusively in the outer membrane of rat liver mitochondria. 1998 J. Biol. Chem. pmid:9722587
Kim YS and Kolattukudy PE Stereospecificity of malonyl-CoA decarboxylase, acetyl-CoA carboxylase, and fatty acid synthetase from the uropygial gland of goose. 1980 J. Biol. Chem. pmid:6101330
Shi J et al. A single amino acid change (substitution of glutamate 3 with alanine) in the N-terminal region of rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA inhibition and high affinity binding. 1999 J. Biol. Chem. pmid:10092622
Price NT et al. Alternative exon usage in the single CPT1 gene of Drosophila generates functional diversity in the kinetic properties of the enzyme: differential expression of alternatively spliced variants in Drosophila tissues. 2010 J. Biol. Chem. pmid:20061394
Cook GA The hypoglycemic sulfonylureas glyburide and tolbutamide inhibit fatty acid oxidation by inhibiting carnitine palmitoyltransferase. 1987 J. Biol. Chem. pmid:3104327
Dreier J et al. Kinetic analysis of the actinorhodin aromatic polyketide synthase. 1999 J. Biol. Chem. pmid:10455191
Saddik M et al. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. 1993 J. Biol. Chem. pmid:7902355
Heath RJ and Rock CO Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and beta-ketoacyl-acyl carrier protein synthases in Escherichia coli. 1995 J. Biol. Chem. pmid:7797547
Guay C et al. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. 2007 J. Biol. Chem. pmid:17928289
Li S et al. Molecular analysis of the role of tyrosine 224 in the active site of Streptomyces coelicolor RppA, a bacterial type III polyketide synthase. 2007 J. Biol. Chem. pmid:17331946
Campbell FM et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. 2002 J. Biol. Chem. pmid:11734553
Murthy MS and Pande SV Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. 1994 J. Biol. Chem. pmid:8034571
Weis BC et al. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. 1994 J. Biol. Chem. pmid:8034622
Morillas M et al. Structural model of the catalytic core of carnitine palmitoyltransferase I and carnitine octanoyltransferase (COT): mutation of CPT I histidine 473 and alanine 381 and COT alanine 238 impairs the catalytic activity. 2001 J. Biol. Chem. pmid:11553629
López-Viñas E et al. Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A. 2007 J. Biol. Chem. pmid:17452323
Kerner J et al. Characterization of the malonyl-CoA-sensitive carnitine palmitoyltransferase (CPTo) of a rat heart mitochondrial particle. Evidence that the catalytic unit is CPTi. 1994 J. Biol. Chem. pmid:8132545
Cook GA et al. Yonetani-Theorell analysis of hepatic carnitine palmitoyltransferase-I inhibition indicates two distinct inhibitory binding sites. 1994 J. Biol. Chem. pmid:8132614
Nicot C et al. Pig liver carnitine palmitoyltransferase. Chimera studies show that both the N- and C-terminal regions of the enzyme are important for the unusual high malonyl-CoA sensitivity. 2002 J. Biol. Chem. pmid:11790778
Morillas M et al. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain. 2002 J. Biol. Chem. pmid:11790793
Esser V et al. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. 1993 J. Biol. Chem. pmid:8449948
Funabashi M et al. Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. 2008 J. Biol. Chem. pmid:18364359
Thampy KG Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. 1989 J. Biol. Chem. pmid:2572585
Jackowski S et al. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. 1989 J. Biol. Chem. pmid:2651445
Heath RJ and Rock CO Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. 1996 J. Biol. Chem. pmid:8567624
Bian F et al. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. 2005 J. Biol. Chem. pmid:15611129
Liu H et al. Cysteine-scanning mutagenesis of muscle carnitine palmitoyltransferase I reveals a single cysteine residue (Cys-305) is important for catalysis. 2005 J. Biol. Chem. pmid:15579906
Reszko AE et al. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. 2004 J. Biol. Chem. pmid:14982940
Corkey BE et al. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. 1989 J. Biol. Chem. pmid:2689441
Atkinson LL et al. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. 2002 J. Biol. Chem. pmid:12058043
Sleeman MC and Schofield CJ Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis. 2004 J. Biol. Chem. pmid:14625287
Pan Y et al. The extreme C terminus of rat liver carnitine palmitoyltransferase I is not involved in malonyl-CoA sensitivity but in initial protein folding. 2002 J. Biol. Chem. pmid:12351641
Lopaschuk GD et al. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. 1994 J. Biol. Chem. pmid:7929291
Hu Z et al. A role for hypothalamic malonyl-CoA in the control of food intake. 2005 J. Biol. Chem. pmid:16219771
Brown NF et al. Expression of a cDNA for rat liver carnitine palmitoyltransferase I in yeast establishes that catalytic activity and malonyl-CoA sensitivity reside in a single polypeptide. 1994 J. Biol. Chem. pmid:7929364
Mizuarai S et al. Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. 2005 J. Biol. Chem. pmid:16027120
Decaux JF et al. Decreased hepatic fatty acid oxidation at weaning in the rat is not linked to a variation of malonyl-CoA concentration. 1988 J. Biol. Chem. pmid:2893801
Funa N et al. A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. 2005 J. Biol. Chem. pmid:15701630
Cook GA and Gamble MS Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. 1987 J. Biol. Chem. pmid:2950085
Boren J et al. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. 2003 J. Biol. Chem. pmid:12750369
Treber M et al. Identification by mutagenesis of conserved arginine and glutamate residues in the C-terminal domain of rat liver carnitine palmitoyltransferase I that are important for catalytic activity and malonyl-CoA sensitivity. 2003 J. Biol. Chem. pmid:12540837
Rainwater DL and Kolattukudy PE Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. 1983 J. Biol. Chem. pmid:6402506
Borthwick K et al. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity. 2006 J. Biol. Chem. pmid:16908527
Rainwater DL and Kolattukudy PE Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. 1985 J. Biol. Chem. pmid:3880746
Walters DW and Gilbert HF Thiol/disulfide redox equilibrium and kinetic behavior of chicken liver fatty acid synthase. 1986 J. Biol. Chem. pmid:3759951
Mikkelsen J et al. A novel procedure for the preparation and characterization of catalytically active fatty acid synthetase immobilized on sepharose beads. 1987 J. Biol. Chem. pmid:3805043
Wolfgang MJ and Lane MD The role of hypothalamic malonyl-CoA in energy homeostasis. 2006 J. Biol. Chem. pmid:17018521
Morillas M et al. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. 2003 J. Biol. Chem. pmid:12499375
Zhang L et al. Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase. Malonyltransferase and acyl carrier protein. 2003 J. Biol. Chem. pmid:12882974
Harwood HJ et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. 2003 J. Biol. Chem. pmid:12842871
Mulder H et al. Overexpression of a modified human malonyl-CoA decarboxylase blocks the glucose-induced increase in malonyl-CoA level but has no impact on insulin secretion in INS-1-derived (832/13) beta-cells. 2001 J. Biol. Chem. pmid:11113153
Roduit R et al. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta -cell. 2000 J. Biol. Chem. pmid:10967113
Jackson VN et al. Identification of positive and negative determinants of malonyl-CoA sensitivity and carnitine affinity within the amino termini of rat liver- and muscle-type carnitine palmitoyltransferase I. 2000 J. Biol. Chem. pmid:10969089
Declercq PE et al. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. 1987 J. Biol. Chem. pmid:3597441
Keyes SR and Cinti DL Biochemical properties of cytochrome b5-dependent microsomal fatty acid elongation and identification of products. 1980 J. Biol. Chem. pmid:7440546
Kudo N et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. 1995 J. Biol. Chem. pmid:7615556
Gamble MS and Cook GA Alteration of the apparent Ki of carnitine palmitoyltransferase for malonyl-CoA by the diabetic state and reversal by insulin. 1985 J. Biol. Chem. pmid:3894356
Cook GA Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. 1984 J. Biol. Chem. pmid:6480597
Soulié JM et al. Transient kinetic studies of fatty acid synthetase. A kinetic self-editing mechanism for the loading of acetyl and malonyl residues and the role of coenzyme A. 1984 J. Biol. Chem. pmid:6706923
Gokulan K et al. Crystal structure of Mycobacterium tuberculosis polyketide synthase 11 (PKS11) reveals intermediates in the synthesis of methyl-branched alkylpyrones. 2013 J. Biol. Chem. pmid:23615910
Gande R et al. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. 2004 J. Biol. Chem. pmid:15308633
Kerner J et al. Phosphorylation of rat liver mitochondrial carnitine palmitoyltransferase-I: effect on the kinetic properties of the enzyme. 2004 J. Biol. Chem. pmid:15247243
Onay-Besikci A et al. gAd-globular head domain of adiponectin increases fatty acid oxidation in newborn rabbit hearts. 2004 J. Biol. Chem. pmid:15269215
Reszko AE et al. Regulation of malonyl-CoA concentration and turnover in the normal heart. 2004 J. Biol. Chem. pmid:15181001
Fernandes ND and Kolattukudy PE A newly identified methyl-branched chain fatty acid synthesizing enzyme from Mycobacterium tuberculosis var. bovis BCG. 1998 J. Biol. Chem. pmid:9446591
Rangan VS and Smith S Expression in Escherichia coli and refolding of the malonyl-/acetyltransferase domain of the multifunctional animal fatty acid synthase. 1996 J. Biol. Chem. pmid:8940200
Rangan VS and Smith S Alteration of the substrate specificity of the malonyl-CoA/acetyl-CoA:acyl carrier protein S-acyltransferase domain of the multifunctional fatty acid synthase by mutation of a single arginine residue. 1997 J. Biol. Chem. pmid:9115261
Keyes SR et al. Rat liver microsomal elongation of fatty acids. Possible involvement of cytochrome b5. 1979 J. Biol. Chem. pmid:468787
McGarry JD and Foster DW In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis. 1979 J. Biol. Chem. pmid:468816
McGarry JD et al. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. 1978 J. Biol. Chem. pmid:659409
Rathnasingh C et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. 2012 J. Biotechnol. pmid:21723339