Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Xu P et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. 2014 ACS Chem. Biol. pmid:24191643
Cardella F Insulin therapy during diabetic ketoacidosis in children. 2005 Acta Biomed pmid:16915797
Wang YF et al. Crystallization and preliminary X-ray analysis of the 12S central subunit of transcarboxylase from Propionibacterium shermanii. 2001 Acta Crystallogr. D Biol. Crystallogr. pmid:11173475
Oefner C et al. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. 2006 Acta Crystallogr. D Biol. Crystallogr. pmid:16699188
Ghadbane H et al. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT). 2007 Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. pmid:17909282
Kiens B and Roepstorff C Utilization of long-chain fatty acids in human skeletal muscle during exercise. 2003 Acta Physiol. Scand. pmid:12864744
Ruderman NB et al. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. 2003 Acta Physiol. Scand. pmid:12864749
Zammit VA et al. Regulation of mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I): role of membrane-topology. 1997 Adv. Enzyme Regul. pmid:9381976
Saggerson D et al. Regulation of mitochondrial carnitine palmitoyl transferases from liver and extrahepatic tissues. 1992 Adv. Enzyme Regul. pmid:1496923
Mead JF et al. Transformations of the polyunsaturated fatty acids in the brain. 1977 Adv. Exp. Med. Biol. pmid:920466
Lopaschuk GD Malonyl CoA control of fatty acid oxidation in the diabetic rat heart. 2001 Adv. Exp. Med. Biol. pmid:11900364
Hertel K et al. Kinetic investigation of carnitine palmitoyltransferases in homogenates of human skeletal muscle using L-amino-carnitine and malonyl-CoA. 1999 Adv. Exp. Med. Biol. pmid:10709631
Ruderman NB et al. Malonyl CoA as a metabolic switch and a regulator of insulin sensitivity. 1998 Adv. Exp. Med. Biol. pmid:9781332
Kikuchi S and Kolattukudy PE Immobilization of fatty acid synthetase from Mycobacterium smegmatis by radiation-induced polymerization. 1990 Agric. Biol. Chem. pmid:1368562
Guzmán M and Castro J Alterations in the regulatory properties of hepatic fatty acid oxidation and carnitine palmitoyltransferase I activity after ethanol feeding and withdrawal. 1990 Alcohol. Clin. Exp. Res. pmid:2378434
Maurer I et al. Carnitine acyltransferases are not changed in Alzheimer disease. 1998 Alzheimer Dis Assoc Disord pmid:9651134
McGarry JD Glucose-fatty acid interactions in health and disease. 1998 Am. J. Clin. Nutr. pmid:9497160
Kantor PF et al. Fatty acid oxidation in the reperfused ischemic heart. 1999 Am. J. Med. Sci. pmid:10408755
Saha AK et al. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. 1999 Am. J. Physiol. pmid:10362615
Takeyama N et al. Altered hepatic fatty acid metabolism in endotoxicosis: effect of L-carnitine on survival. 1989 Am. J. Physiol. pmid:2521428
Odland LM et al. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. 1998 Am. J. Physiol. pmid:9611159
Goodwin GW and Taegtmeyer H Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. 1999 Am. J. Physiol. pmid:10516138
Ruderman NB et al. Malonyl-CoA, fuel sensing, and insulin resistance. 1999 Am. J. Physiol. pmid:9886945
Winder WW et al. Time course of exercise-induced decline in malonyl-CoA in different muscle types. 1990 Am. J. Physiol. pmid:2166437
Rodnick KJ and Sidell BD Cold acclimation increases carnitine palmitoyltransferase I activity in oxidative muscle of striped bass. 1994 Am. J. Physiol. pmid:8141397
Saha AK et al. A malonyl-CoA fuel-sensing mechanism in muscle: effects of insulin, glucose, and denervation. 1995 Am. J. Physiol. pmid:7653546
Odland LM et al. Human skeletal muscle malonyl-CoA at rest and during prolonged submaximal exercise. 1996 Am. J. Physiol. pmid:8638703
Winder WW and Hardie DG Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. 1996 Am. J. Physiol. pmid:8779952
Winder WW et al. Divergence of muscle and liver fructose 2,6-diphosphate in fasted exercising rats. 1991 Am. J. Physiol. pmid:2035632
Saha AK et al. Lipid abnormalities in tissues of the KKAy mouse: effects of pioglitazone on malonyl-CoA and diacylglycerol. 1994 Am. J. Physiol. pmid:8048519
Laybutt DR et al. Muscle lipid accumulation and protein kinase C activation in the insulin-resistant chronically glucose-infused rat. 1999 Am. J. Physiol. pmid:10600797
Merrill GF et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. 1997 Am. J. Physiol. pmid:9435525
Hutber CA et al. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. 1997 Am. J. Physiol. pmid:9124333
Noland RC et al. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17638705
Kim JY et al. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11934665
Beha A et al. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16380389
Yee AJ and Turcotte LP Insulin fails to alter plasma LCFA metabolism in muscle perfused at similar glucose uptake. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:12067845
Bezaire V et al. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle. 2004 Am. J. Physiol. Endocrinol. Metab. pmid:12954596
Lehtihet M et al. Glibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis. 2003 Am. J. Physiol. Endocrinol. Metab. pmid:12684219
Assifi MM et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15956049
Collier CA et al. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16478780
Kuhl JE et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16434556
Guo W et al. Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17148751
Sebastián D et al. CPT I overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17062841
Chien D et al. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. 2000 Am. J. Physiol. Endocrinol. Metab. pmid:10913024
Starritt EC et al. Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. 2000 Am. J. Physiol. Endocrinol. Metab. pmid:10710500
Roepstorff C et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15383373
Miura S et al. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm. 2013 Am. J. Physiol. Endocrinol. Metab. pmid:23695215
Gao S et al. Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. 2013 Am. J. Physiol. Endocrinol. Metab. pmid:23736540
Frøsig C et al. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. 2009 Am. J. Physiol. Endocrinol. Metab. pmid:19190265