Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Odland LM et al. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. 1998 Am. J. Physiol. pmid:9611159
Winder WW et al. Time course of exercise-induced decline in malonyl-CoA in different muscle types. 1990 Am. J. Physiol. pmid:2166437
Saha AK et al. Lipid abnormalities in tissues of the KKAy mouse: effects of pioglitazone on malonyl-CoA and diacylglycerol. 1994 Am. J. Physiol. pmid:8048519
Noland RC et al. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. 2007 Am. J. Physiol. Endocrinol. Metab. pmid:17638705
Taylor EB et al. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15644453
Beha A et al. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16380389
Assifi MM et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15956049
Steinberg GR et al. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. 2003 Am. J. Physiol. Endocrinol. Metab. pmid:12441311
Roepstorff C et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. 2005 Am. J. Physiol. Endocrinol. Metab. pmid:15383373
Frøsig C et al. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. 2009 Am. J. Physiol. Endocrinol. Metab. pmid:19190265