Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Richardson MT et al. Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase. 1999 Metab. Eng. pmid:10935930
Roduit R et al. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta -cell. 2000 J. Biol. Chem. pmid:10967113
Jackson VN et al. Identification of positive and negative determinants of malonyl-CoA sensitivity and carnitine affinity within the amino termini of rat liver- and muscle-type carnitine palmitoyltransferase I. 2000 J. Biol. Chem. pmid:10969089
Suh DY et al. Evidence for catalytic cysteine-histidine dyad in chalcone synthase. 2000 Biochem. Biophys. Res. Commun. pmid:10973790
Goodwin GW and Taegtmeyer H Improved energy homeostasis of the heart in the metabolic state of exercise. 2000 Am. J. Physiol. Heart Circ. Physiol. pmid:11009433
Odland LM et al. Effects of high fat provision on muscle PDH activation and malonyl-CoA content in moderate exercise. 2000 J. Appl. Physiol. pmid:11090589
Winder WW and Holmes BF Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. 2000 J. Appl. Physiol. pmid:11090599
McGarry JD Malonyl-CoA and satiety? Food for thought. 2000 Trends Endocrinol. Metab. pmid:11091115
Suo Z et al. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing. 2000 Proc. Natl. Acad. Sci. U.S.A. pmid:11106385
Mulder H et al. Overexpression of a modified human malonyl-CoA decarboxylase blocks the glucose-induced increase in malonyl-CoA level but has no impact on insulin secretion in INS-1-derived (832/13) beta-cells. 2001 J. Biol. Chem. pmid:11113153